精英家教网 > 高中数学 > 题目详情
7.△ABC中,a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),则最大角的余弦值为$\frac{\sqrt{6}-\sqrt{2}}{4}$.

分析 根据题意,可以设a=2t,b=$\sqrt{6}$t,c=($\sqrt{3}$+1)t,比较可得c为最大边,C为最大角,利用余弦定理cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$计算可得答案.

解答 解:根据题意,a:b:c=2:$\sqrt{6}$:($\sqrt{3}$+1),
设a=2t,b=$\sqrt{6}$t,c=($\sqrt{3}$+1)t,
比较可得a<b<c,即c为最大边,C为最大角;
则cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
故答案为:$\frac{\sqrt{6}-\sqrt{2}}{4}$.

点评 本题考查余弦定理的应用,注意先比较三个边的大小,得到最大边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)=(1+ax2•a-x(a>0且a≠1).
(1)判断函数的奇偶性;
(2)讨论函数的单调性,并求值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c分别是△ABC内角A,B,C的对边,且$\sqrt{3}$csinA=acosC.
(I)求C的值;
(Ⅱ)若c=2a,b=2$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)在定义域x∈R上,是以5为周期的奇函数,且f(-2)=1,则f(12)等于(  )
A.1B.-1C.5D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:$\frac{{x}^{2}}{4}$+y2=1上一点,从原点O向圆M:(x-x02+(y-y02=r2作两条切线分别与椭圆C交于点P,Q.直线OP,OQ的斜率分别记为k1,k2
(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;
(2)若r=$\frac{2\sqrt{5}}{5}$,①求证:k1k2=-$\frac{1}{4}$;②求OP•OQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i为虚数单位,复数z满足zi=$\frac{3-i}{1+i}$,则复数z的模|z|=(  )
A.$\sqrt{3}$B.4C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知0<β<α<$\frac{π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=$\frac{3}{5}$,求sin2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}中,a1=0,an+1=an+2n-1(n∈N*).根据数列的首项和递推公式,写出它的前五项并归纳出通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.圆心为(1,2),且与y轴相切的圆的方程是(  )
A.(x+1)2+(y+2)2=4B.(x-1)2+(y-2)2=4C.(x+1)2+(y+2)2=1D.(x-1)2+(y-2)2=1

查看答案和解析>>

同步练习册答案