精英家教网 > 高中数学 > 题目详情
7.在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量得到物体的重量与弹簧长度的对比表:
物体重量(单位g)12345
弹簧长度(单位cm)1.53456.5
(1)利用最小二乘法求y对x的回归直线方程;
(2)预测所挂物体重量为8g时的弹簧长度.
(参考公式及数据:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}},a=\overline y-b\overline x$,$\sum_{i=1}^5{{x_i}^2}=55$$\sum_{i=1}^5{{x_i}{y_i}}=72$)

分析 (1)由表中数据,计算$\overline{x}$、$\overline{y}$,求出回归系数b、a,写出回归方程;
(2)利用线性回归方程计算x=8时y的值即可.

解答 解:(1)由表中数据,得$\overline{x}$=$\frac{1}{5}$×(1+2+3+4+5)=3,
$\overline{y}$=$\frac{1}{5}$×(1.5+3+4+5+6.5)=4,
又$\sum_{i=1}^5{{x_i}^2}=55$,$\sum_{i=1}^5{{x_i}{y_i}}=72$,
∴b=$\frac{{{\sum_{i=1}^{5}x}_{i}y}_{i}-5\overline{x}\overline{y}}{{{\sum_{i=1}^{5}x}_{i}}^{2}-5{\overline{x}}^{2}}$=$\frac{72-5×3×4}{55-5{×3}^{2}}$=1.2,
∴a=$\overline{y}$-b$\overline{x}$=4-1.2×3=0.4;
∴y关于x的线性回归方程为y=1.2x+0.4;
(2)由线性回归方程为y=1.2x+0.4,
把x=8代入回归方程y=1.2x+0.4中,
得:y=1.2×8+0.4=10,
故预测所挂物体重量为8g时的弹簧长度10cm.

点评 本题考查了线性回归方程的求法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列函数既是偶函数又是幂函数的是(  )
A.y=xB.$y={x^{\frac{2}{3}}}$C.$y={x^{\frac{1}{2}}}$D.y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于定义域为R的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上与x轴均有交点,则称x0为函数f(x)的一个“界点”.则下列四个函数中,不存在“界点”的是(  )
A.f(x)=x2+bx-2(b∈R)B.f(x)=|x2-3|C.f(x)=1-|x-2|D.f(x)=x3+x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2(x<0)}\\{-{x^2}(x≥0)}\end{array}}\right.$,若f(f(a))=2,则a=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正三棱锥P-ABC,点P,A,B,C都在半径为$\sqrt{2}$的球面上,若PA,PB,PC两两相互垂直,则球心到截面ABC的距离为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对于命题:
①“若 x2+y2=0,则 x,y全为0”的逆命题;
②“全等三角形是相似三角形”的否命题;
③“若 m>0,则x2+x-m=0有实根”的逆否命题.
其中真命题的题号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.椭圆$C:{x^2}+\frac{y^2}{4}=1$的焦点坐标是(0,±$\sqrt{3}$);长轴长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知二次不等式ax2+2x+b>0解集为{x|x≠-$\frac{1}{a}$},则a2+b2-a-b的最小值为(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数是奇函数的是(  )
A.f(x)=log2xB.f(x)=x2C.f(x)=3xD.f(x)=x3

查看答案和解析>>

同步练习册答案