【题目】在平面直角坐标系中,曲线(为参数,实数),曲线(为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线与交于,两点,与交于,两点.当时,;当,.
(1)求和的值.
(2)求的最大值.
科目:高中数学 来源: 题型:
【题目】已知:曲线表示双曲线;:曲线表示焦点在轴上的椭圆.
(1)分别求出条件中的实数的取值范围;
(2)甲同学认为“是的充分条件”,乙同学认为“是的必要条件”,请判断两位同学的说法是否正确,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】今有9所省级示范学校参加联考,参加人数约5000人,考完后经计算得数学平均分为113分.已知本次联考的成绩服从正态分布,且标准差为12.
(1)计算联考成绩在137分以上的人数.
(2)从所有试卷中任意抽取1份,已知分数不超过123分的概率为0.8.
①求分数低于103分的概率.
②从所有试卷中任意抽取5份,由于试卷数量较大,可以把每份试卷被抽到的概率视为相同,表示抽到成绩低于103分的试卷的份数,写出的分布列,并求出数学期望.
参考数据:
,,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
空调类 | 冰箱类 | 小家电类 | 其它类 | |
营业收入占比 | ||||
净利润占比 |
则下列判断中不正确的是( )
A. 该公司2018年度冰箱类电器营销亏损
B. 该公司2018年度小家电类电器营业收入和净利润相同
C. 该公司2018年度净利润主要由空调类电器销售提供
D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得
P(K2>k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参照附表,得到的正确结论是( )
A.有99.5%以上的把握认为“爱好该项运动与性别无关”
B.有99.5%以上的把握认为“爱好该项运动与性别有关”
C.在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,底面ABC,是边长为2的正三角形,,E,F分别为BC,的中点.
1求证:平面平面;
2求三棱锥的体积;
3在线段上是否存在一点M,使直线MF与平面没有公共点?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com