精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线为参数,实数),曲线为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线交于两点,与交于两点.当时,;当.

(1)求的值.

(2)求的最大值.

【答案】(1)(2)

【解析】

(Ⅰ)由曲线消去参数,得到曲线的普通方程,再由极坐标方程与直角的互化公式,得到曲线的极坐标方程,由题意可得当时,得,当时,.

(Ⅱ)由(Ⅰ)可得的极坐标方程,进而得到的表达式,利用三角函数的性质,即可求解.

(Ⅰ)由曲线为参数,实数),

化为普通方程为,展开为:

其极坐标方程为,即,由题意可得当时,,∴.

曲线为参数,实数),

化为普通方程为,展开可得极坐标方程为

由题意可得当时,,∴.

(Ⅱ)由(Ⅰ)可得的极坐标方程分别为.

,∴的最大值为

时取到最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:曲线表示双曲线;:曲线表示焦点在轴上的椭圆.

1)分别求出条件中的实数的取值范围;

2)甲同学认为的充分条件,乙同学认为的必要条件,请判断两位同学的说法是否正确,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,中点.

证明:平面

线段上是否存在点,使三棱锥的体积为?若存在,确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若函数存在5个零点,则实数的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今有9所省级示范学校参加联考,参加人数约5000人,考完后经计算得数学平均分为113分.已知本次联考的成绩服从正态分布,且标准差为12.

(1)计算联考成绩在137分以上的人数.

(2)从所有试卷中任意抽取1份,已知分数不超过123分的概率为0.8.

①求分数低于103分的概率.

②从所有试卷中任意抽取5份,由于试卷数量较大,可以把每份试卷被抽到的概率视为相同,表示抽到成绩低于103分的试卷的份数,写出的分布列,并求出数学期望.

参考数据:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:

空调类

冰箱类

小家电类

其它类

营业收入占比

净利润占比

则下列判断中不正确的是( )

A. 该公司2018年度冰箱类电器营销亏损

B. 该公司2018年度小家电类电器营业收入和净利润相同

C. 该公司2018年度净利润主要由空调类电器销售提供

D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好某项运动,利用列联表,由计算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

参照附表,得到的正确结论是( )

A.有995%以上的把握认为爱好该项运动与性别无关

B.有995%以上的把握认为爱好该项运动与性别有关

C.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别有关

D.在犯错误的概率不超过005%的前提下,认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面ABC是边长为2的正三角形,EF分别为BC的中点.

1求证:平面平面

2求三棱锥的体积;

3在线段上是否存在一点M,使直线MF与平面没有公共点?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线平面,直线平行四边形,四棱锥的顶点在平面上,分别是的中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案