精英家教网 > 高中数学 > 题目详情
如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.

剖析:由题意所求曲线段是抛物线的一部分,求曲线方程需建立适当的直角坐标系,设出抛物线方程,由条件求出待定系数即可,求出曲线方程后要标注x、y的取值范围.

解:以直线l1为x轴,线段MN的垂直平分线为y轴,建立直角坐标系,由条件可知,曲线段C是以点N为焦点,以l2为准线的抛物线的一段.其中A、B分别为曲线段C的端点.

    设曲线段C的方程为y2=2px(p>0)(xa≤x≤xb,y>0),其中xa、xb为A、B的横坐标,p=|MN|,

所以M(-,0)、N(,0).

    由|AM|=,|AN|=3,得

    (xa+)2+2pxa=17,                    ①

    (xa-)2+2pxa=9.                      

    ①②联立,解得xa=,代入①式,并由p>0,解得

    因为△AMN为锐角三角形,所以>xA.

    故舍去所以

    由点B在曲线段C上,得xb=|BN|-=4.

    综上,曲线段C的方程为y2=8x(1≤x≤4,y>0).

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知直线l:3x+4y-12=0与x,y轴的正半轴分别交于A,B两点,直线l1和AB,OA分别交于C,D,且平分△AOB的面积,求CD的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知直线l:3x+4y-12=0与x,y轴的正半轴分别交于A,B两点,直线l1和线段AB,OA分别交于C,D且平分△AOB的面积.
(1)求△AOB的面积;
(2)求CD的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直线l1和l2相交于点M,l1⊥l2点N∈l1,以A、B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等,若△AMN为锐角三角形,|AM|=,|AN|=3且|BN|=6,建立适当的坐标系,求曲线段C的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省南通市小海中学高二(上)期中数学试卷(解析版) 题型:解答题

如图所示,已知直线l:3x+4y-12=0与x,y轴的正半轴分别交于A,B两点,直线l1和线段AB,OA分别交于C,D且平分△AOB的面积.
(1)求△AOB的面积;
(2)求CD的最小值.

查看答案和解析>>

同步练习册答案