7£®¶Ô¼×¡¢ÒÒµÄѧϰ³É¼¨½øÐгéÑù·ÖÎö£¬¸÷³éÎåÃŹ¦¿Î£¬µÃµ½µÄ¹Û²âÖµÈç±í£º
¼×6080709070
ÒÒ8060708075
ÎÊ£º¼×¡¢ÒÒË­µÄƽ¾ù³É¼¨½ÏºÃ£¿Ë­µÄ¸÷ÃŹ¦¿Î·¢Õ¹½Ïƽºâ£¿£¨¡¡¡¡£©
A£®¼×µÄƽ¾ù³É¼¨½ÏºÃ£¬Òҵĸ÷ÃŹ¦¿Î·¢Õ¹½Ïƽºâ
B£®¼×µÄƽ¾ù³É¼¨½ÏºÃ£¬¼×µÄ¸÷ÃŹ¦¿Î·¢Õ¹½Ïƽºâ
C£®ÒÒµÄƽ¾ù³É¼¨½ÏºÃ£¬¼×µÄ¸÷ÃŹ¦¿Î·¢Õ¹½Ïƽºâ
D£®ÒÒµÄƽ¾ù³É¼¨½ÏºÃ£¬Òҵĸ÷ÃŹ¦¿Î·¢Õ¹½Ïƽºâ

·ÖÎö ·Ö±ðÇó³ö¼×¡¢ÒÒ¶þÈ˵Äƽ¾ù³É¼¨ºÍ·½²î£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð ½â£º¼×µÄƽ¾ù³É¼¨$\overline{{x}_{1}}$=$\frac{1}{5}$£¨60+80+70+90+70£©=74£¬
¼×µÄ·½²î${{S}_{1}}^{2}$=$\frac{1}{5}$[£¨60-74£©2+£¨80-74£©2+£¨70-74£©2+£¨90-74£©2+£¨70-74£©2]=104£®
ÒÒµÄƽ¾ù³É¼¨$\overline{{x}_{2}}$=$\frac{1}{5}$£¨80+60+70+80+75£©=73£¬
Òҵķ½²î${{S}_{2}}^{2}$=$\frac{1}{5}$[£¨80-73£©2+£¨60-73£©2+£¨70-73£©2+£¨80-73£©2+£¨75-73£©2]=56£®
¡à¼×µÄƽ¾ù³É¼¨½ÏºÃ£¬Òҵĸ÷ÃŹ¦¿Î·¢Õ¹½Ïƽºâ£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²é¼×¡¢ÒÒ¶þÈ˵Äƽ¾ù³É¼¨ºÍ¸÷Ãſγ̷¢Õ¹µÄ¾ùºâ³Ì¶ÈµÄ±È½Ï£¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâƽ¾ùÊý¡¢·½²îµÄ¼ÆË㹫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬AB£¬CDÊÇÔ²OµÄÁ½Ìõ»¥Ïà´¹Ö±µÄÖ±¾¶£¬EÊÇÔ²OÉϵĵ㣬¹ýEµã×÷Ô²OµÄÇÐÏß½»ABµÄÑÓ³¤ÏßÓÚF£¬Á¬½áCE½»ABÓÚGµã£®
£¨1£©ÇóÖ¤£ºFG2=FA•FB£»
£¨2£©ÈôÔ²OµÄ°ë¾¶Îª2$\sqrt{3}$£¬OB=$\sqrt{3}$OG£¬ÇóEGµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª¡÷ABCÈý¸ö¶¥µãA¡¢B¡¢C¼°Æ½ÃæÄÚÒ»µãP£¬Âú×ã2$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$£¬ÈôʵÊý¦ËÂú×ã$\overrightarrow{AB}$+$\overrightarrow{AC}$=¦Ë$\overrightarrow{AP}$£¬Ôò¦ËµÄֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÁ½¸öËæ»ú±äÁ¿X£¬YÂú×ãX+2Y=4£¬ÇÒX¡«N£¨1£¬22£©£¬ÔòE£¨Y£©£¬D£¨Y£©ÒÀ´ÎÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{2}$£¬2B£®$\frac{1}{2}$£¬1C£®$\frac{3}{2}$£¬1D£®$\frac{1}{2}$£¬2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÔÚ¡÷ABCÖУ¬DΪBC±ßÖе㣬GΪADÖе㣬ֱÏßEF¹ýGÓë±ßAB¡¢ACÏཻÓÚE¡¢F£¬ÇÒ$\overrightarrow{AE}$=m$\overrightarrow{AB}$£¬$\overrightarrow{AF}$=n$\overrightarrow{AC}$£¬Ôòm+nµÄ×îСֵΪ£¨¡¡¡¡£©
A£®4B£®$\frac{1}{2}$C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®É躯Êý f £¨x£©ÊǶ¨ÒåÔÚRÉϵÄÖÜÆÚΪ2µÄº¯Êý£¬µ±x¡Ê[-1£¬1£©Ê±£¬f£¨x£©=$\left\{\begin{array}{l}{-4{x}^{2}+1£¬-1¡Üx£¼0}\\{x+\frac{7}{4}£¬0¡Üx£¼1}\end{array}\right.$£¬Ôòf[f£¨$\frac{3}{2}$£©]=$\frac{7}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®´Ó3¼þÕýÆ·£¬2¼þ´ÎÆ·ÖÐËæ»ú³éÈ¡³öÁ½¼þ£¬ÔòÇ¡ºÃÊÇ1¼þÕýÆ·£¬1¼þ´ÎÆ·µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{3}{5}$B£®$\frac{1}{5}$C£®$\frac{2}{5}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªµÈ²îÊýÁÐ{an}£¬Âú×ãd£¾0£¬ÇÒa1+a2+a3=9£¬a1•a3=5
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãbn=$\frac{a_n}{2^n}$£¬SnΪÊýÁÐ{bn}µÄÇ°nÏîºÍ£¬Ö¤Ã÷£ºSn£¼3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÇóÏÂÁк¯ÊýµÄÖµÓò£º
£¨1£©y=log${\;}_{\frac{1}{2}}$$\sqrt{4-{x}^{2}}$£»
£¨2£©y=$\frac{{2}^{x}+1}{{2}^{x}-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸