精英家教网 > 高中数学 > 题目详情
12.已知函数y=asinx+2b(a>0)的最大值为4,最小值为0,则a+b=3;此时函数y=bsinax的最小正周期为π.

分析 根据正弦函数的性质求解即可.

解答 解:由题意,函数y=asinx+2b(a>0)的最大值为4,最小值为0,
可得a+2b=4,2b-a=0,解得:a=2,b=1.
则a+b=3.
函数y=bsinax的最小正周期T=$\frac{2π}{a}=\frac{2π}{2}=π$.
故答案为:3,π

点评 本题主要考查了正弦函数的图象及性质以及周期的求法.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:
使用年限x(年)23456
维修费用y(万元)2.23.85.56.57.0
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归方程;
(2)根据回归直线方程,估计使用年限为12年时,维修费用是多少?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P在曲线y=x3-x+7上移动,过点P的切线倾斜角的取值范围是(  )
A.[0,π]B.$[0,\frac{π}{2})∪[\frac{3π}{4},π)$C.$[0,\frac{π}{2})∪[\frac{π}{2},π)$D.$[0,\frac{π}{2}]∪[\frac{3π}{4},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α∈[$\frac{π}{2}$,$\frac{3π}{2}$],β∈[-$\frac{π}{2}$,0],且(α-$\frac{π}{2}$)3-sinα-2=0,8β3+2cos2β+1=0,则sin($\frac{α}{2}$+β)的值为(  )
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{BC}=(\frac{{\sqrt{3}}}{2},\frac{1}{2})$则∠ABC=arccos$\frac{3+\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C的对边分别为a、b、c,$\overrightarrow{m}$=(b,cosB),$\overrightarrow{n}$=(2a-c,cosC)且$\overrightarrow{m}$∥$\overrightarrow{n}$,求
(1)角B的大小.
(2)sinA+sinC的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=-x2+2lnx的极大值是函数g(x)=x+$\frac{a}{x}$的极小值的-$\frac{1}{2}$倍,并且$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{{f({x_1})-g({x_2})}}{k-1}$≤1恒成立,则实数k的取值范围是(  )
A.$(-∞,-\frac{40}{3}+2ln3]∪(-1,1)∪(1,+∞)$B.$(-∞,-\frac{34}{3}+2ln3]∪(1,+∞)$
C.$(-∞,-\frac{34}{3}+2ln3]∪[-1,1)∪(1,+∞)$D.$(-∞,-\frac{40}{3}+2ln3]∪(1,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax+elnx与g(x)=$\frac{{x}^{2}}{x-elnx}$的图象有三个不同的公共点,其中e为自然对数的底数,则实数a的取值范围为(  )
A.a<-eB.a>1C.a>eD.a<-3或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的函数f(x)=$\frac{ax}{{{x^2}+1}}$+1,a∈R以下说法正确的是(  )
①函数f(x)的图象是中心对称图形
②函数f(x)有两个极值
③函数f(x)零点个数最多为三个
④当a>0时,若1<m<n,则f(m)+f(n)>2f($\frac{m+n}{2}$)
A.①③B.②④C.①④D.②③

查看答案和解析>>

同步练习册答案