精英家教网 > 高中数学 > 题目详情

【题目】下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是(
A.f(x)=
B.f(x)=x3
C.f(x)=( x
D.f(x)=3x

【答案】D
【解析】解:A.f(x)= ,f(y)= ,f(x+y)= ,不满足f(x+y)=f(x)f(y),故A错;
B.f(x)=x3 , f(y)=y3 , f(x+y)=(x+y)3 , 不满足f(x+y)=f(x)f(y),故B错;
C.f(x)= ,f(y)= ,f(x+y)= ,满足f(x+y)=f(x)f(y),但f(x)在R上是单调减函数,故C错.
D.f(x)=3x , f(y)=3y , f(x+y)=3x+y , 满足f(x+y)=f(x)f(y),且f(x)在R上是单调增函数,故D正确;
故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=-sin2x+mcosx-1,x∈[].

(1)若fx)的最小值为-4,求m的值;

(2)当m=2时,若对任意x1x2∈[-]都有|fx1)-fx2)|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.
(1)求a的值;
(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产产品件的总成本(万元).已知产品单价(万元)与产品件数满足,生产100件这样的产品单价为50万元.

(1)设产量为件时,总利润为(万元),求的解析式;

(2)产量定为多少时总利润(万元)最大?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+x-6y+m=0与直线lx+2y-3=0

1)若直线l与圆C没有公共点,求m的取值范围;

2)若直线l与圆C相交于PQ两点,O为原点,且OPOQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长为4,直线被椭圆截得的线段长为.

(1)求椭圆的标准方程;

(2)过椭圆的右顶点作互相垂直的两条直线分别交椭圆两点(点不同于椭圆的右顶点),证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数若关于的方程有两个不等实数根,且,则的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域为(
A.(0,
B.(2,+∞)
C.(0, )∪(2,+∞)
D.(0, ]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且a>c,已知 =2,cosB= ,b=3,求:
(1)a和c的值;
(2)cos(B﹣C)的值.

查看答案和解析>>

同步练习册答案