精英家教网 > 高中数学 > 题目详情

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第年需要付出设备的维修和工人工资等费用的信息如下图

(1)

(2)引进这种设备后,从第几年开始该公司能够获利?

(3)这种设备使用多少年,该公司的年平均获利最大?

【答案】(1) ;(2)从第2年该公司开始获利;(3)这种设备使用5年,该公司的年平均获利最大

【解析】试题(1)由图可知,每年费用是以为首项,为公差的等差数列,所以;(2)设纯收入与年数的关系为,则:,由解得点的最小值为;(3)年平均收入为,当且仅当时等号成立.

试题解析:

1)由题意知,每年费用是以2为首项,2为公差的等差数列,求得:

2)设纯收入与年数的关系为,则:

,解得

又因为,所以,即从第2年该公司开始获利

3)年平均收入为

当且仅当时,年平均收益最大,

所以这种设备使用5年,该公司的年平均获利最大

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知从地去地有①或②两条路可走,并且汽车走路①堵车的概率为,汽车走路②堵车的概率为,若现在有两辆汽车走路①,有一辆汽车走路②,且这三辆车是否堵车相互之间没有影响,

(1)若这三辆汽车中恰有一辆汽车被堵的概率为,求走路②堵车的概率;

(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 ,则下列说法正确的是( )

A. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

B. 上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线

C. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

D. 把曲线向右平移个单位长度,再把得到的曲线上各点横坐标缩短到原来的,纵坐标不变,得到曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点为坐标原点O,对称轴为x轴,其准线过点.

(1)求抛物线C的方程;

(2)过抛物线焦点F作直线l,使得抛物线C上恰有三个点到直线l的距离都为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年度车辆发生道路交通事故的情况相联系.发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和费率浮动比率表

浮动因素

浮动比率

A1

上一个年度未发生有责任道路交通事故

下浮10%

A2

上两个年度未发生有责任道路交通事故

下浮20%

A3

上三个及以上年度未发生有责任道路交通事故

下浮30%

A4

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

A5

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

A6

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5 000元,一辆非事故车盈利10 000元.且各种投保类型的频率与上述机构调查的频率一致,完成下列问题:

①若该销售商店内有6辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆车,求这2辆车恰好有一辆为事故车的概率;

②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线和曲线的参数方程分别为为参数),为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)写出直线、曲线的普通方程,以及曲线的直角坐标方程;

(2)设直线与曲线在第一象限内的交点分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断的单调性,并说明理由;

2)判断的奇偶性,并用定义证明;

3)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“荆、荆、襄、宜七校联考”正在如期开展,组委会为了解各所学校学生的学情,欲从四地选取200人作样本开展调研.若来自荆州地区的考生有1000人,荆门地区的考生有2000人,襄阳地区的考生有3000人,宜昌地区的考生有2000人.为保证调研结果相对准确,下列判断正确的有(  )

①用分层抽样的方法分别抽取荆州地区学生25人、荆门地区学生50人、襄阳地区学生75人、宜昌地区学生50人;

②可采用简单随机抽样的方法从所有考生中选出200人开展调研;

③宜昌地区学生小刘被选中的概率为

④襄阳地区学生小张被选中的概率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 .等 差数列中, ,且公差

求数列的通项公式

(Ⅱ)是否存在正整数,使得?.若存在,求出的最小值;若 不存在,请说明理由.

查看答案和解析>>

同步练习册答案