精英家教网 > 高中数学 > 题目详情
(1)已知α,β都是锐角,sinα=
3
5
,cos(α+β)=
5
13
,求sinβ的值.
(2)若α,β都是锐角,sinα=
5
5
sinβ=
10
10
,求α+β的值.
分析:(1)由α,β都是锐角,得出α+β的范围,由sinα和cos(α+β)的值,利用同角三角函数间的基本关系分别求出cosα和sin(α+β)的值,然后把所求式子的角β变为(α+β)-α,利用两角和与差的正弦函数公式化简,把各自的值代入即即可求出值.
(2)先利用同角三角函数的基本关系和α、β的范围,求得cosα和cosβ的值,进而利用余弦函数的两角和公式求得答案.
解答:解:(1)∵α,β都是锐角,∴α+β∈(0,π),
又sinα=
3
5
,cos(α+β)=
5
13

∴cosα=
4
5
,sin(α+β)=
12
13

则sinβ=sin[(α+β)-α]
=sin(α+β)cosα-cos(α+β)sinα
=
12
13
×
4
5
-
5
13
×
3
5
=
33
65

(2):∵α、β为锐角,sinα=
5
5
sinβ=
10
10

∴cosα=
1-sin2α
=
2
5
5

cosβ=
1-sin2β
=
3
10
10

∴cos(α+β)=cosαcosβ-sinαsinβ=
2
2

α、β为锐角.
∴α+β=
π
4
点评:此题考查了同角三角函数间的基本关系,以及两角和与差的正弦函数公式,熟练掌握公式是解本题的关键,同时注意角度的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中数学 来源: 题型:

【选修4-5:不等式选讲】
(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2
(2)设不等的两个正数a、b满足a3-b3=a2-b2,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2
(2)若不等式|a-1|≥
3x+1
+
3y+1
+
3z+1
对满足x+y+z=1的一切正实数x,y,z恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年宁夏银川一中高三第六次月考数学试卷(理科)(解析版) 题型:解答题

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省三亚一中、国兴中学、海师附中、嘉积中学四校高三联考数学试卷(解析版) 题型:解答题

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:

查看答案和解析>>

同步练习册答案