精英家教网 > 高中数学 > 题目详情
(本题满分12分)
如图,在直三棱柱中,的中点.

(Ⅰ)在线段上是否存在一点,使得⊥平面?若存在,找出点的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面和平面所成角的大小

(Ⅰ)略
(Ⅱ)
解:(Ⅰ)根据题意CA、CB、CC1两两互相垂直
如图:以C为原点, CA、CB、CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系

设AC=BC=CC1=a,则

假设在上存在一点N,使⊥平面,设
所以
,得:
N在线段的中点处                -----------------------(6分)
(Ⅱ)由(Ⅰ)知MN⊥平面A1BC,则平面A1BC的一个法向量为
取AB中点D,连接CD,易证CD⊥平面A1AB
A1AB的一个法向量  ------------------(8分)

所以面和面所成的角为.   -----------------(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
四棱锥中,侧棱,底面是直角梯形,,且的中点
(I)求异面直线所成的角;
(II)线段上是否存在一点,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,斜三棱柱ABC-A1B1C1的侧面AA1C1C是面积为的菱形,∠ACC1为锐角,侧面ABB1A1⊥侧面AA1C1C,且A1B=AB=AC=1.

(1)求证:AA1⊥BC1;
(2) 求三棱锥A1-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知是腰长为2的等腰直角三角形(如图1),,在边上分别取点,使得,把沿直线折起,使=90°,得四棱锥(如图2).在四棱锥中,

(I)求证:CE⊥AF; (II)当时,试在上确定一点G,使得,并证明你的结论.




查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分) 如图,△ACD是等边三角形,△ABC是等腰直角
三角形,∠ACB=90°,BD交AC于E,AB=2.
(1)求cos∠CBE的值;(2)求AE。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若将下面的展开图恢复成正方体,则的度数为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,直四棱柱的底面是菱形,,点分别是上、下底面菱形的对角线的交点.⑴求证:∥平面;⑵求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
在三棱锥ABCD中,平面DBC⊥平面ABC,△ABC为正三角形, AC=2,DC=DB=
(1)求DC与AB所成角的余弦值;
(2)在平面ABD上求一点P,使得CP⊥平面AB              D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,△PAB所在的平面α和四边形ABCD所在
的平面β互相垂直,且,AD=4,
BC=8,AB=6,若
则点P在平面内的轨迹是          (      )
A.圆的一部分B.椭圆的一部分
C.双曲线的一部分D.抛物线的一部分

查看答案和解析>>

同步练习册答案