精英家教网 > 高中数学 > 题目详情
19.有以下四个命题,其中真命题的个数为(  )
①△ABC中,“A>B”是“sinA>sinB”的充要条件;
②若命题p:?x∈R,sinx≤1,则¬p:?x∈R,sinx<1;
③函数y=3sin(2x-$\frac{π}{6}$)+2的单调递减区间是[$\frac{π}{3}$+2kπ,$\frac{5}{6}$π+2kπ](k∈z);
④若函数f(x)=x2+2x+2a与g(x)=|x-1|+|x+a|有相同的最小值,则$\int_1^a{f(x)}dx$=$\frac{28}{3}$.
A.1个B.2个C.3个D.4个

分析 根据正弦定理,可判断①;写出原命题的否定,可判断②;求出函数的单调区间,可判断③,求出a值,进而求出积分,可判断④

解答 解:①△ABC中,“A>B”?“a>b”?“2RsinA>2RsinB”?“sinA>sinB”,故“A>B”是“sinA>sinB”的充要条件,即①是真命题;
②若命题p:?x∈R,sinx≤1,则¬p:?x∈R,sinx>1,故②是假命题;
③由2x-$\frac{π}{6}$∈[$\frac{π}{2}$+2kπ,$\frac{3π}{2}$+2kπ](k∈z)得:x∈[$\frac{π}{3}$+kπ,$\frac{5}{6}$π+kπ](k∈z);
即函数y=3sin(2x-$\frac{π}{6}$)+2的单调递减区间是[$\frac{π}{3}$+kπ,$\frac{5}{6}$π+kπ](k∈z),故③是假命题;
④若函数f(x)=x2+2x+2a的最小值为:2a-1,
函数g(x)=|x-1|+|x+a|的最小值为:|a+1|,
由2a-1=|a+1|得:a=2,
则$\int_1^a{f(x)}dx$=${∫}_{1}^{2}({x}^{2}+2x+4)dx$=$(\frac{1}{3}×{2}^{3}+{2}^{2}+4×2)$-$(\frac{1}{3}×{1}^{3}+{1}^{2}+4×1)$=$\frac{28}{3}$,故④是真命题;
故真命题的个数为2个,
故选:B.

点评 本题以命题的真假判断为载体考查了正弦定理,全称命题的否定,正弦函数的单调性,函数的最值,积分等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.证明不等式ln(1+$\frac{1}{x}$)>$\frac{1}{1+x}$(0<x<+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若集合A={y|y=2x},B={x|x2-2x-3>0,x∈R},那么A∩B=(  )
A.(0,3]B.[-1,3]C.(3,+∞)D.(0,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,三视图表示的几何体是(  )
A.圆台B.棱台C.棱柱D.圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=exlnx+2ex
(1)求y=f(x)-exlnx-2ex-$\frac{{e}^{x}}{x}$在x∈[$\frac{1}{2}$,2]上的最值;
(2)已知函数h(x)=$\frac{f(x)}{x}$-x-1,数列{an}的通项公式为an=$\frac{1}{n}$,其前n项和为Sn,求证:2×3×4×…×n>${e}^{n-{S}_{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是函数f(x)=Acos($\frac{2}{3}$πx+φ)-1(A>0,|φ|<$\frac{π}{2}$)的图象的一部分,则f(2015)=(  )
A.1B.2C.$\frac{{\sqrt{3}}}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,已知向量$\overrightarrow{a}$=($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$),$\overrightarrow{b}$=(cosx,sinx),$x∈({-\frac{π}{2},\frac{π}{2}})$.
(I)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求tanx的值;
(II)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={-2,-1,0,1},N={x|$\frac{1}{2}$≤2x≤4},x∈Z},则M∩N=(  )
A.M={-2,-1,0,1,2}B.M={-1,0,1,2}C.M={-1,0,1}D.M={0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=logax(a>0且a≠1),且函数的图象过点(2,1).
(1)求函数f(x)的解析式;
(2)若f(m2-m)<1成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案