精英家教网 > 高中数学 > 题目详情
2.设x∈R,向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,-4),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.-6B.$\sqrt{10}$C.$\sqrt{5}$D.10

分析 根据$\overrightarrow{a},\overrightarrow{b}$的坐标及$\overrightarrow{a}∥\overrightarrow{b}$即可求出x值,从而得出$\overrightarrow{a}$的坐标,进行数量积的坐标运算即可求出$\overrightarrow{a}•\overrightarrow{b}$的值.

解答 解:∵$\overrightarrow{a}∥\overrightarrow{b}$;
∴1•(-4)-2x=0;
∴x=-2;
∴$\overrightarrow{a}=(1,-2),且\overrightarrow{b}=(2,-4)$;
∴$\overrightarrow{a}•\overrightarrow{b}=1×2+(-2)×(-4)=10$.
故选D.

点评 考查平行向量的坐标关系,以及向量数量积的坐标运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列命题中的假命题是(  )
A.?x∈R,3x>0B.?x0∈R,lgx0=0
C.$?x∈({0,\frac{π}{2}}),x>sinx$D.$?{x_0}∈R,sin{x_0}+cos{x_0}=\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示的程序框图所表示的算法功能是输出(  )
A.使1×2×4×6×…×n≥2017成立的最小整数n
B.使1×2×4×6×…×n≥2017成立的最大整数n
C.使1×2×4×6×…×n≥2017成立的最小整数n+2
D.使1×2×4×6×…×n≥2017成立的最大整数n+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=2$\sqrt{3}$sin(2ωx+$\frac{π}{3}$)-4cos2ωx+3(0<ω<2),且y=f(x)的图象的一条对称轴为x=$\frac{π}{6}$.
(1)求ω的值并求f(x)的最小值;
(2)△ABC中,a,b,c分别为△ABC的内角A,B,C的对边,且a=1,S△ABC=$\frac{\sqrt{3}}{4}$,f(A)=2,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,正三角形ABC的外接圆半径为2,圆心为O,PB=PC=2,D为AP上一点,AD=2DP,点D在平面ABC内的射影为圆心O.
(Ⅰ)求证:DO∥平面PBC;
(Ⅱ)求三棱锥O-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X,则E(X)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用数学归纳法证明:1+3+5+…+(2n-1)=n2(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)当m=2时,求函数f(x)的极值;
(2)设t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3对任意的m∈(4,6)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.甲,乙两人被随机分配到A,B,C三个不同的岗位(一个人只能去一个工作岗位),记分配到A岗位的人数为随机变量X,则随机变量X的数学期望E(X)=$\frac{2}{3}$,方差D(X)=$\frac{4}{9}$.

查看答案和解析>>

同步练习册答案