精英家教网 > 高中数学 > 题目详情
函数f(x)=
log2x,x≥0
x(x-2),x<0
,则f[f(-2)]=(  )
A、2B、3C、4D、5
考点:函数的值
专题:函数的性质及应用
分析:根据解析式先求f(-2)=8,再求f(8),即可.
解答: 解:∵函数f(x)=
log2x,x≥0
x(x-2),x<0

∴f(-2)=-2(-2-2)=8
∴[f(-2)]=f(8)=log28=3,
故选:B,
点评:本题考查了函数的概念,性质,属于计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果f(x)=
x+1
,则f(7)=(  )
A、2
B、4
C、2
2
D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

过P(2,0)的直线l1截圆C:x2+y2-6x+4y+4=0所得的弦长为4
2
,则直线l1的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log0.5(-x2+4x+5),则f(3)与f(4)的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=cosx(asinx-cosx)+cos2
π
2
+x)满足f(-
π
3
)
=f(0).
(1)求f(x)的单调递减区间;
(2)设锐角三角形ABC的内角A,B,C所对的边分别为a,b,c,且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1+a2+…+an=n2(n∈N+).
(1)求数列{an}的通项公式;
(2)对任意给定的k∈N+,是否存在p,y∈N+(k<p<r)使
1
ak
1
ap
1
ar
成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由;
(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为a n1,a n2,a n3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a2+b2=c2-
2
ab,则∠C=(  )
A、30°B、45°
C、150°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在R上的函数f(x)有以下五个命题:
①若f(x)为奇函数,则y=f(x-1)的图象关于点A(1,0)对称;
②若对于任意x∈R,有f(x-2)=f(x+2),则f(x)的图象一定关于直线x=2对称;
③函数y=f(x+2)与y=f(2-x)的图象关于直线x=2对称;
④如果函数y=f(x)满足f(x+1)=f(1-x),f(x+3)=f(3-x),那么该函数以4为周期;
⑤如果函数y=f(x)满足f(x+1)=f(1-x),f(x+3)=-f(3-x),那么该函数以4为周期.
其中错误命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

三内角为A、B、C,已知
OM
=(sinB+cosB,cosC),
ON
=(sinC,sinB-cosB),
OM
ON
=-
1
5

(1)求tan2A的值;   
(2)求
2cos2
A
2
-3sinA-1
2
sin(A+
π
4
)

查看答案和解析>>

同步练习册答案