精英家教网 > 高中数学 > 题目详情
5.已知A 为椭圆上一点,E,F 分别为椭圆的左右焦点,∠EAF=90°,设AE 的延长线交椭圆于B,又|AB|=|AF|,则椭圆的离心率e为(  )
A.$\sqrt{6}$-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}-\sqrt{2}}{2}$

分析 由题意画出图形,利用|AB|=|AF|,△AEF,△ABF为直角三角形及椭圆的定义列式求得椭圆的离心率.

解答 解:如图,
设|AF|=m,|AE|=n,
∵|AB|=|AF|,且∠EAF=90°,
∴|BF|=$\sqrt{2}m$,
又|BE|=m-n,
∴$\sqrt{2}m+m-n=2a$,
与m+n=2a联立,可得$m=\frac{4a}{2+\sqrt{2}},n=\frac{2\sqrt{2}a}{2+\sqrt{2}}$,
代入m2+n2=4c2
可得$\frac{16{a}^{2}}{(2+\sqrt{2})^{2}}+\frac{8{a}^{2}}{(2+\sqrt{2})^{2}}=4{c}^{2}$,
∴$6{a}^{2}=(2+\sqrt{2})^{2}{c}^{2}$,则${e}^{2}=\frac{6}{(2+\sqrt{2})^{2}}$,
∴e=$\frac{\sqrt{6}}{2+\sqrt{2}}=\frac{\sqrt{6}(2-\sqrt{2})}{2}=\sqrt{6}-\sqrt{3}$.
故选:A.

点评 本题主要考查圆锥曲线的定义的应用,试题在平面几何中的勾股定理、等腰三角形和圆锥曲线的定义之间进行了充分的交汇,在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口,此题是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}(x≥0)}\\{x+1(x<0)}\end{array}\right.$,则不等式f(x2)<f(2-x)的解集为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,且a1=1,an+1=1+Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{$\frac{n}{{a}_{n}}$}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆中心E在坐标原点,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、$C({1,\frac{3}{2}})$三点.
(1)求椭圆E的方程:
(2)若点D为椭圆E上不同于A、B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线l:y=k(x-1)(k≠0)与椭圆E交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{6}$,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx-2与椭圆C交于A,B两点,点P(0,1),且|PA|=|PB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程;
(3)试预测加工10个零件需要多少时间?(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn-1+kan=tan2-1,n≥2,n∈N*(其中k,t为常数).
(1)若k=$\frac{1}{2}$,t=$\frac{1}{4}$,数列{an}是等差数列,求a1的值;
(2)若数列{an}是等比数列,求证:k<t.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C满足:过椭圆C的右焦点F($\sqrt{2}$,0)且经过短轴端点的直线的倾斜角为$\frac{π}{4}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2015}}{2015}$;g(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2015}}{2015}$;设函数F(x)=[f(x+3)]•[g(x-4)],且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为(  )
A.8B.9C.10D.11

查看答案和解析>>

同步练习册答案