精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$=(1+cos2θ,sin2θ),$\overrightarrow{b}$=(1-sin2θ,sinθ)($\frac{π}{2}<θ<π$)
(Ⅰ)求|$\overrightarrow{a}+\overrightarrow{b}$|的取值范围;
(Ⅱ)如果|$\overrightarrow{a}$|-|$\overrightarrow{b}$|=-$\frac{2}{5}$,求tanθ-$\frac{1}{tanθ}$的值.

分析 (Ⅰ)由已知求出sin2θ的范围,进一步求出($\overrightarrow{a}+\overrightarrow{b}$)2的范围,则答案可求;
(Ⅱ)由|$\overrightarrow{a}$|-|$\overrightarrow{b}$|=-$\frac{2}{5}$,可得sinθ+cosθ=$\frac{1}{5}$,得sin2$θ=-\frac{24}{25}$,把tanθ-$\frac{1}{tanθ}$化切为弦得答案.

解答 解:(Ⅰ)∵$\frac{π}{2}<θ<π$,∴π<2θ<2π,得sin2θ∈[-1,0),
∴($\overrightarrow{a}+\overrightarrow{b}$)2=(2,2sin2θ)2=4(1+sin22θ)∈(4,8],
因此|$\overrightarrow{a}+\overrightarrow{b}$|的取值范围是$({2,2\sqrt{2}}]$;
(Ⅱ)∵$\frac{π}{2}<θ<π$,∴sinθ>0,cosθ<0,
∴$|\overrightarrow{a}|-|\overrightarrow{b}|=\sqrt{(1+cos2θ)^{2}+si{n}^{2}2θ}$$-\sqrt{(1-cos2θ)^{2}+si{n}^{2}2θ}$
=$\sqrt{2(1+cos2θ)}-\sqrt{2(1-cos2θ)}$=-2cosθ-2sinθ=-$\frac{2}{5}$.
故sinθ+cosθ=$\frac{1}{5}$,得sin2$θ=-\frac{24}{25}$,
又$\frac{π}{2}<θ<π$,且sinθ+cosθ>0.
故$cos2θ<0⇒cos2θ=-\sqrt{1-{{({-\frac{24}{25}})}^2}}=-\frac{7}{25}$.
∴$tanθ-\frac{1}{tanθ}=\frac{sinθ}{cosθ}-\frac{cosθ}{sinθ}=\frac{{{{sin}^2}θ-{{cos}^2}θ}}{sinθcosθ}=-\frac{2cos2θ}{sin2θ}=\frac{{\frac{14}{25}}}{{-\frac{24}{25}}}=-\frac{7}{12}$.

点评 本题考查平面向量的数量积运算,考查了向量模的求法,训练了利用同角三角函数基本关系式求三角函数的值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.曲线y=$\sqrt{x}$在矩阵$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$作用下变换所得的图形对应的曲线方程是y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)是一次函数,且f(f(x))=4x+1,则f(x)=$2x+\frac{1}{3},或-2x-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.tan$\frac{11π}{6}$的值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.-$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和Sn=3n2+8n(n∈N*),则{an}的通项公式为(  )
A.an=6n+8B.an=6n+5C.an=3n+8D.an=3n+5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{1}{3}{x}^{3}+\frac{1}{2}a{x}^{2}+2bx+c(a,b,c∈R)$,且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则z=(a+3)2+b2的取值范围为($\frac{1}{2}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正整数N除以正整数m后的余数为n,则记为N=n(bmodm),例如11≡4(bmod7),如图所示的程序框图的算法源于我国古代闻名中外的《中国剩余定理》,执行该程序框图,则输出的n=(  )
A.16B.17C.19D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A、B、C的对边分别为a、b、c,$\frac{π}{3}$-A=B,a=3,b=5,则c=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.计算:(2+5i)-|3-4i|+|5+12i|i=-3+18i.

查看答案和解析>>

同步练习册答案