精英家教网 > 高中数学 > 题目详情

【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布封国封城,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:

企业成立年份

2019

2018

2017

2016

2015

企业成立年限

1

2

3

4

5

倒闭企业数量(万家)

5.23

4.70

3.72

3.12

2.42

倒闭企业所占比例

21.8%

19.6%

15.5%

13.0%

10.1%

根据上表,给出两种回归模型:

模型①:建立曲线型回归模型,求得回归方程为

模型②:建立线性回归模型.

1)根据所给的统计量,求模型②中关于的回归方程;

2)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测年成立的企业中倒闭企业所占比例(结果保留整数).

回归模型

模型①

模型②

回归方程

参考公式:.

参考数据:.

【答案】12.

【解析】

1)根据所给数据求出,相应值代入参考公式即可求得回归方程;(2)计算模型②的相关系数的平方,得模型②的相关系数的平方更大其拟合程度更好,再将代入回归方程进行计算,求得预测值.

1)由,可得

所以

所以模型②中关于的回归方程为.

2)对于回归方程

所以

所以模型①的小于模型②,说明回归模型②刻画的拟合效果更好,

选择模型②,当时,

所以预测年成立的企业中倒闭企业所占比例为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我们打印用的A4纸的长与宽的比约为,之所以是这个比值,是因为把纸张对折,得到的新纸的长与宽之比仍约为,纸张的形状不变.已知圆柱的母线长小于底面圆的直径长(如图所示),它的轴截面ABCD为一张A4纸,若点E为上底面圆上弧AB的中点,则异面直线DEAB所成的角约为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的导函数,讨论的单调性;

(2)若是自然对数的底数),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在疫情这一特殊时期,教育行政部门部署了停课不停学的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:

1)是否有的把握认为高三学生的这次摸底考试数学成绩与其在线学习时长有关

2)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有共同的焦点,且两曲线的公共点到的距离是它到直线 (点在此直线右侧)的距离的一半.

1)求椭圆的方程;

2)设为坐标原点,直线过点且与椭圆交于两点,以为邻边作平行四边形.是否存在直线,使点落在椭圆或抛物线上?若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,证明函数在区间上有三个极值点;

2)若对于恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,底面为边长为3的正三角形,三棱柱外接球的体积与内切球的体积比为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线不过原点且不平行于坐标轴,有两个交点,线段的中点为

1)若,点在椭圆上,分别为椭圆的两个焦点,求的范围;

2)若过点,射线与椭圆交于点,四边形能否为平行四边形?若能,求此时直线斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,分别为的中点是由绕直线旋转得到,连结.

1)证明:平面

2)若,棱上是否存在一点,使得?若存在,确定点 的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案