精英家教网 > 高中数学 > 题目详情
(1)求
(2)已知,求n.
(1) 165 ;(2)27 。

试题分析:(1)利用组合数的性质2,==……==165。
(2)即n(n-1)(n-2)=,所以,n=27.
点评:简单题,组合数性质有:(1);(2),解题过程中要灵活选用。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法的种数是(  )
A.360B.288C.216D.96

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的展开式中,求
(1)常数项;
(2)系数最大的项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为奇数,则除以9的余数为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有5个男生和3个女生,从中选取5人担任5门不同学科的科代表,求分别符合下列条件的选法数:
(1)有女生但人数必须少于男生.
(2)某女生一定要担任语文科代表.
(3)某男生必须包括在内,但不担任数学科代表.
(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某外商计划在4个候选城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有  (  )
A.16种 B.36种C.42种D.60种

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这5 个球投放在这5个盒内,要求每个盒内投放一个球,并且恰有两个球的编号与盒子的编号相同,则这样的投放方法的总数为(    )
A.20B.30C.60D.120

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有4个不同的球,四个不同的盒子,把球全部放入盒内.
(1)共有多少种放法?
(2)恰有一个盒子不放球,有多少种放法?
(3)恰有一个盒内放2个球,有多少种放法?
(4)恰有两个盒不放球,有多少种放法?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从点到点的路径如图所示,则不同的最短路径共有     条.

查看答案和解析>>

同步练习册答案