精英家教网 > 高中数学 > 题目详情

已知函数

(1)求函数的最小正周期;

(2)当时,求函数的最大值,最小值.

 

【答案】

(1);(2)最大值为1,最小值

【解析】

试题分析:(1)首先根据同角三角关系和降次公式将函数化简为的形式,再运用即可将函数化简,最后由最小正周期公式即可求出最小正周期; (2)由题中所给的范围,求出整体的范围,再结合函数的图象,不难求出的取值范围,即可求出的最大值和最小值.

试题解析:(1),                   4分

的最小正周期为.                                     6分

(2),                         8分

                                       10分

                                               12分

时,函数的最大值为1,最小值.          14分

考点:1.三角化简;2.三角函数的图象;3.三角函数的最值

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届山东省临沂市高三9月月考理科数学试卷(解析版) 题型:解答题

已知函数

(1)求函数的定义域 ;

(2)若函数的最小值为,求实数的值.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年人教版高一(上)期中数学试卷(解析版) 题型:解答题

已知函数
(1)求f(x)的定义域和值域;
(2)证明函数在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源:2010年上海市奉贤区高考数学二模试卷(文科)(解析版) 题型:解答题

已知函数
(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x,使得成立,若存在求出x;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二下期中数学试卷(解析版) 题型:解答题

已知函数

(1)求的定义域;

(2)判断函数的奇偶性,并予以证明;

(3)若,猜想之间的关系并证明.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市高三入学测试数学卷 题型:解答题

(本小题满分12分)

已知函数 ,

  (1)求函数的定义域;(2)证明:是偶函数;

  (3)若,求的取值范围。

 

查看答案和解析>>

同步练习册答案