精英家教网 > 高中数学 > 题目详情
已知一个四棱锥P-ABCD的三视图(主视图与左视图为直角三角形,俯视图是带有一条对角线的正方形)如下,E是侧棱PC的中点。
(1)求四棱锥P-ABCD的体积;
(2)求证:平面APC⊥平面BDE。
解:(1)由三视图可知,AB=BC=1,PC⊥面ABCD,且PC=2,
又底面ABCD是正方形,故S正方形ABCD=1,
所以
(2)证明:因为底面ABCD是正方形,
所以对角线AC⊥BD
又PC⊥面ABCD,而BD面ABCD,
故BD⊥PC,
又PC∩AC=C,
所以,BD⊥平面APC
又BD平面BDE,
故平面APC⊥平面BDE。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(1)求证:EF⊥平面PAD;
(2)求平面EFG与平面ABCD所成锐二面角的大小;
(3)若M为线段AB上靠近A的一个动点,问当AM长度等于多少时,直线MF与平面EFG所成角的正弦值等于
15
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD的四条侧棱,底面四条边及两条对角线共10条线段,现有一只蚂蚁沿着这10条线段从一个顶点爬行到另一个顶点,规定:(1)从一个顶点爬行到另一个顶点视为一次爬行;(2)从任一顶点向另4个顶点爬行是等可能的(若蚂蚁爬行在底面对角线上时仍按原方向直行).则蚂蚁从顶点P开始爬行4次后恰好回到顶点P的概率是(  )
A、
1
16
B、
9
16
C、
9
64
D、
13
64

查看答案和解析>>

科目:高中数学 来源:2014届江西省景德镇市高二下学期期末考试理科数学试卷(解析版) 题型:选择题

已知正四棱锥P—ABCD的四条侧棱,底面四条边及两条对角线共10条线段,现有一只蚂蚁沿着这10条线段从一个顶点爬行到另一个顶点,规定: (1)从一个顶点爬行到另一个顶点视为一次爬行;(2)从任一顶点向另4个顶点爬行是等可能的(若蚂蚁爬行在底面对角线上时仍按原方向直行). 则蚂蚁从顶点P开始爬行4次后恰好回到顶点P的概率是(  )                                 

A.              B.              C.             D.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省温州市瓯海中学高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(1)求证:EF⊥平面PAD;
(2)求平面EFG与平面ABCD所成锐二面角的大小;
(3)若M为线段AB上靠近A的一个动点,问当AM长度等于多少时,直线MF与平面EFG所成角的正弦值等于

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省丹东市高考数学二模试卷(理科)(解析版) 题型:解答题

已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(1)求证:EF⊥平面PAD;
(2)求平面EFG与平面ABCD所成锐二面角的大小;
(3)若M为线段AB上靠近A的一个动点,问当AM长度等于多少时,直线MF与平面EFG所成角的正弦值等于

查看答案和解析>>

同步练习册答案