【题目】平面α外有两条直线m和n,如果m和n在平面α内的投影分别是m1和n1,给出下列四个命题:①m1⊥n1m⊥n;②m⊥nm1⊥n1;③m1与n1相交m与n相交或重合;④m1与n1平行m与n平行或重合.其中不正确的命题个数是( )
A. 1 B. 2
C. 3 D. 4
科目:高中数学 来源: 题型:
【题目】【2018届吉林省普通中学高三第二次调研】设椭圆的左焦点为,右顶点为,离心率为,短轴长为,已知是抛物线的焦点.
(1)求椭圆的方程和抛物线的方程;
(2)若抛物线的准线上两点关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点,若的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-ax2(x∈R),e=2.718 28…为自然对数的底数.
(1)求函数f(x)在点P(0,1)处的切线方程;
(2)若函数f(x)为R上的单调递增函数,试求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+1)=-f(x),且当x∈[0,1)时,f(x)=log2(x+1),给出下列命题
①f(2014)+f(-2015)=0;
②函数f(x)在定义域上是周期为2的函数;
③直线y=x与函数f(x)的图象有2个交点;
④函数f(x)的值域为(-1,1).
其中正确的是( )
A. ①② B. ②③
C. ①④ D. ①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(, 为参数),曲线的极坐标方程为.
(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;
(2)若直线经过点,求直线被曲线截得的线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,直线与x轴的交点为P,与抛物线的交点为Q,且.
(1)求抛物线的方程;
(2)过F的直线l与抛物线相交于A,D两点,与圆相交于B,C两点(A,B两点相邻),过A,D两点分别作抛物线的切线,两条切线相交于点M,求△ABM与△CDM的面积之积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义域为R的周期函数,最小正周期为2,且
f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判断f(x)的奇偶性;
(2)试求出函数f(x)在区间[-1,2]上的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的单调函数f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,则方程f(x)﹣f′(x)=1的解所在区间是 ( )
A. (2,3) B. C. D. (1,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com