精英家教网 > 高中数学 > 题目详情
己知函数y=x2的值域是[1,4],则其定义域不可能是(  )
分析:根据函数在选项所给的区间上的单调性求出函数的值域,从而可判断定义域是否可能.
解答:解:根据函数y=x2在[1,2]上单调递增,故函数的值域是[1,4],故选项A正确;
根据函数y=x2在[-
3
2
,0]上单调递减,在[0,2]上单调递增,故函数的值域是[0,4],故选项B不正确;
根据函数y=x2在[-2,-1]上单调递减,故函数的值域是[1,4],故选项C正确;
根据函数y=x2在[-2,-1)上单调递减,则函数在[-2,-1)∪{1}上的值域是[1,4],故选项D正确;
故选B.
点评:本题主要考查了利用单调性求函数的值域,同时考查了分析问题的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•眉山一模)己知函数f(x)=2-x2+ax+3
(Ⅰ)当a=0时,求函数f(x)的值域;
(II)若A={x|y=lg(5-x)},函数f(x)=2-x2+ax+3在A内是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都模拟)己知函数h(x)=
x2-4x+m
x-2
(x∈R,且x>2)的反函数的图象经过点(4,3),将函数y=h(x)的图象向左平移2个单位后得到函数y=f(x)的图象.
(I )求函数f(x)的解析式;
(II)若g(x)=f(x)+
a
x
,g(x)在区间(0,3]上的值不小于8,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•绵阳一模)己知函数f(x)=
a
x
-1(其中a是不为0的实数),g(x)=lnx,设F(x)=f(x)+g(x).
(Ⅰ)判断函数F(x)在(0,3]上的单调性;
(Ⅱ)已知s,t为正实数,求证:ttex≥stet(其中e为自然对数的底数);
(Ⅲ)是否存在实数m,使得函数y=f(
2a
x2+1
)+2m的图象与函数y=g(x2+1)的图象恰好有四个不同的交点?若存在,求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•河东区二模)己知函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1对,f(x)=x2.若直线y=x+a与函数y=f(x)的图象在[0,2]内恰有两个不同的公共点,则实数a的值是(  )

查看答案和解析>>

科目:高中数学 来源:成都模拟 题型:解答题

己知函数h(x)=
x2-4x+m
x-2
(x∈R,且x>2)的反函数的图象经过点(4,3),将函数y=h(x)的图象向左平移2个单位后得到函数y=f(x)的图象.
(I )求函数f(x)的解析式;
(II)若g(x)=f(x)+
a
x
,g(x)在区间(0,3]上的值不小于8,求实数a的取值范围.

查看答案和解析>>

同步练习册答案