分析 根据题意,先求出满足条件的正方形ABCD的面积,再求出满足条件正方形内的点到正方形的顶点A、B、C、D的距离均不小于2的图形的面积,然后代入几何概型公式即可得到答案.
解答 解:满足条件的正方形ABCD如下图所示:
其中正方形的面积S正方形=4×4=16;
满足到正方形的顶点A、B、C、D的距离均不小于2的平面区域如图中阴影部分所示
则S阴影=16-4π,
故该正方形内的点到正方形的顶点A、B、C、D的距离均不小于1的概率是P=$\frac{{S}_{阴影}}{{S}_{正方形}}$=$\frac{16-4π}{16}$=1$-\frac{π}{4}$;
故答案为:1$-\frac{π}{4}$.
点评 本题考查几何概型的计算,解题的关键理解几何概型的意义,即将长度、面积、体积的比值转化为事件发生的概率
科目:高中数学 来源: 题型:选择题
A. | y=±2x | B. | $y=±\frac{{\sqrt{2}}}{2}x$ | C. | $y=±\frac{1}{2}x$ | D. | $y=±\sqrt{2}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 若$\overrightarrow a•\overrightarrow b<0$,则x>0,y>0 | B. | 若$\overrightarrow a•\overrightarrow b<0$,则x<0,y<0 | ||
C. | 若$\overrightarrow a•\overrightarrow b>0$,则x<0,y<0 | D. | 若$\overrightarrow a•\overrightarrow b>0$,则x>0,y>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1)∪(1,2) | B. | (-∞,0)∪(0,1)∪(1,2) | C. | (-∞,0)∪(1,2) | D. | (-∞,0)∪(0,1)∪(1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-1,2) | B. | (1,4) | C. | (-∞,-1)∪[4,+∞) | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com