精英家教网 > 高中数学 > 题目详情
12.已知点P是边长为4的正方形内任一点,则点P到四个顶点的距离均大于2的概率是1$-\frac{π}{4}$.

分析 根据题意,先求出满足条件的正方形ABCD的面积,再求出满足条件正方形内的点到正方形的顶点A、B、C、D的距离均不小于2的图形的面积,然后代入几何概型公式即可得到答案.

解答 解:满足条件的正方形ABCD如下图所示:
其中正方形的面积S正方形=4×4=16;
满足到正方形的顶点A、B、C、D的距离均不小于2的平面区域如图中阴影部分所示
则S阴影=16-4π,
故该正方形内的点到正方形的顶点A、B、C、D的距离均不小于1的概率是P=$\frac{{S}_{阴影}}{{S}_{正方形}}$=$\frac{16-4π}{16}$=1$-\frac{π}{4}$;
故答案为:1$-\frac{π}{4}$.

点评 本题考查几何概型的计算,解题的关键理解几何概型的意义,即将长度、面积、体积的比值转化为事件发生的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若双曲线$\frac{y^2}{8}-\frac{x^2}{4}=1$的其渐近线方程为(  )
A.y=±2xB.$y=±\frac{{\sqrt{2}}}{2}x$C.$y=±\frac{1}{2}x$D.$y=±\sqrt{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$\overrightarrow c=x\overrightarrow a+y\overrightarrow b$(x,y∈R),且$\overrightarrow a•\overrightarrow c>0$,$\overrightarrow b•\overrightarrow c>0$.(  )
A.若$\overrightarrow a•\overrightarrow b<0$,则x>0,y>0B.若$\overrightarrow a•\overrightarrow b<0$,则x<0,y<0
C.若$\overrightarrow a•\overrightarrow b>0$,则x<0,y<0D.若$\overrightarrow a•\overrightarrow b>0$,则x>0,y>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{1}{x^2-x}$+$\sqrt{2-x}$的定义域是(  )
A.(-∞,1)∪(1,2)B.(-∞,0)∪(0,1)∪(1,2)C.(-∞,0)∪(1,2)D.(-∞,0)∪(0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设平面直角坐标系xOy中,设二次函数f(x)=x2+2x+b(x∈R)的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)若b=-3求圆C的方程;
(Ⅱ)满足条件的b的取值范围;
(Ⅲ)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足不等式组$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,则2x+y的最大值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是R上的增函数,A(0,-3),B(3,1)是其图象上的两点,那么不等式-3<f(x+1)<1的解集的补集是(  )
A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正实数a,b,c满足$\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=1$,求证:$a+\frac{b}{2}+\frac{c}{3}≥9$.

查看答案和解析>>

同步练习册答案