科目:高中数学 来源:选修设计同步数学人教A(2-2) 人教版 题型:013
若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为
4x-y-3=0
x
+4y-5=04x-y+3=0
x
+4y+3=0查看答案和解析>>
科目:高中数学 来源:广东省高要市新桥中学2013届高三11月月考数学(文)试题 题型:013
若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为
A.4x-y-3=0
B.x+4y-5=0
C.4x-y+3=0
D.x+4y+3=0
查看答案和解析>>
科目:高中数学 来源:广东省佛山市南海一中2006-2007学年度第一学期高三数学(文科)周练14 题型:013
若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为
A.4x-y-3=0
B.x+4y-5=0
C.4x-y+3=0
D.X+4y+3=0
查看答案和解析>>
科目:高中数学 来源:2014届山西省高二上学期期末文科数学试卷(A)(解析版) 题型:选择题
曲线y=x2-x+4上一点P处的切线的斜率为5,则点P处的切线方程为
A.5x-y-5=0 B.5x-y+5=0
C.5x-y-53=0 D.5x-y+53=0
查看答案和解析>>
科目:高中数学 来源:2013届黑龙江虎林高中高二下学期期中理科数学试卷(解析版) 题型:解答题
已知函数f(x)=alnx-x2+1.
(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.
【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,
不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0时恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范围是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com