精英家教网 > 高中数学 > 题目详情

【题目】有60m长的钢材,要制作如图所示的窗框:

(1)求窗框面积y与窗框宽x的函数关系;
(2)当窗框宽为多少米时,面积y有最大值?最大值是多少?

【答案】
(1)解:设窗框的宽为xm,窗框的高为 m,由题意得y=x (0<x<20)
(2)解:y=x = 3x(60﹣3x)≤ =150,

当且仅当3x=60﹣3x,即x=10m时,这个窗户的面积最大,最大值是150m2


【解析】(1)设窗框的宽为xxm,窗框的高为 m,由题意得窗框面积y与窗框宽x的函数关系;(2)利用基本不等式,可得面积最大值.
【考点精析】解答此题的关键在于理解基本不等式的相关知识,掌握基本不等式:,(当且仅当时取到等号);变形公式:,以及对基本不等式在最值问题中的应用的理解,了解用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0, ]
(1)求C的参数方程;
(2)设点D在半圆C上,半圆C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个正方体图形中,为正方体的两个顶点,分别为其所在棱的中点,能得出平面的图形的序号是(  )

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD与ABEF均为矩形,BC=BE=2AB,二面角E﹣AB﹣C的大小为 .现将△ACD绕着AC旋转一周,则在旋转过程中,(

A.不存在某个位置,使得直线AD与BE所成的角为
B.存在某个位置,使得直线AD与BE所成的角为
C.不存在某个位置,使得直线AD与平面ABEF所成的角为
D.存在某个位置,使得直线AD与平面ABEF所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分别在线段AB,AC上,AP=3PB,AQ=2QC,M是BD的中点.

(1)证明:DQ∥平面CPM;
(2)若二面角C﹣AB﹣D的大小为 ,求∠BDC的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正△ABC的边长为1, =x +y ,且0≤x,y≤1, ≤x+y≤ ,则动点P所形成的平面区域的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f( )>f(π),则f(x)的单调递增区间是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+2bx+c,设函数g(x)=|f(x)|在区间[﹣1,1]上的最大值为M.
(1)若b=2,试求出M;
(2)若M≥k对任意的b、c恒成立,试求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为(x﹣3)2+y2=1,圆M的方程为(x﹣3﹣3cosθ)2+(y﹣3sinθ)2=1(θ∈R),过M上任意一点P作圆C的两条切线PA,PB,切点分别为A、B,则∠APB的最大值为

查看答案和解析>>

同步练习册答案