精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ex-ax一1(a∈R).
(I)讨论函数y=f(x)的单调性并求其单调区间;
(Ⅱ)若函数F(x)=f(x)-x1nx在定义域内存在零点,试求实数a的取值范围;
(Ⅲ)若g(x)=1n(ex-1)-lnx,且f[g(x)]<f(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.

分析 (I)求导数,分类讨论,利用当时的正负确定函数y=f(x)的单调性并求其单调区间;
(Ⅱ)ex-ax一1-xlnx=0在(0,+∞)上有根,即a=$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$在(0,+∞)上有根,即可求实数a的取值范围;
(Ⅲ)证明x>0时,0<g(x)<x,得出g(x)与x不能同时处于f(x)的单调递减区间内,分类讨论,即可求实数a的取值范围.

解答 解:(I)∵f(x)=ex-ax一1,∴f′(x)=ex-a,
当a≤0时,f′(x)>0恒成立;
即f(x)的单调增区间为R;
当a>0时,x∈(-∞,lna)时,f′(x)<0,
x∈(lna,+∞)时,f′(x)>0;
故f(x)的单调增区间为(lna,+∞),单调减区间为(-∞,lna);
(Ⅱ)F(x)=f(x)-x1nx=ex-ax一1-xlnx,
∵F(x)在定义域(0,+∞)内存在零点,
∴ex-ax一1-xlnx=0在(0,+∞)上有根,
即a=$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$在(0,+∞)上有根;
令g(x)=$\frac{{e}^{x}}{x}$-lnx-$\frac{1}{x}$,g′(x)=$\frac{({e}^{x}-1)(x-1)}{{x}^{2}}$,
故g(x)在(0,1)上单调递减,在(1,+∞)上单调递增;
故g(x)≥g(1)=e-0-1=e-1;
故实数a的取值范围为[e-1,+∞);
(Ⅲ)首先证明,x>0时,g(x)=1n(ex-1)-lnx=ln$\frac{{e}^{x}-1}{x}$<x,即ex-1<xex
即x>0时,h(x)=xex-ex+1>0恒成立.
∵h′(x)=xex>0,∴h(x)在x∈(0,+∞)上单调递增,
∴x∈(0,+∞)上,h(x)>h(0)=0,
∴x>0时,g(x)<x;
同理可以证明x>0时,g(x)>0,∴ex-1-x>0,
∴x>0时,0<g(x)<x
∵①f[g(x)]<f(x)在x∈(0,+∞)上恒成立,②x>0时,0<g(x)<x
∴g(x)与x不能同时处于f(x)的单调递减区间内.
由(I)可知,a≤0,f(x)在R上单调递增,故不存在单调递减区间,符合要求.
当a>0时,f′(x)草图如图所示,

∴为使得g(x)与x不同时处于f(x)的单调递减区间内,当且仅当lna≤0,
∴0<a≤1,
∴当0<g(x)<x<lna时,g(x)与x同时处于f(x)的单调递减区间内,
综上可知a≤1.

点评 本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查恒成立问题,考查分类讨论的数学思想,难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知F1,F2是椭圆$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}$=1的两个焦点,过F1的直线交此椭圆于A,B两点,若|AF2|+|BF2|=8,则|AB|=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$g(x)=\frac{x+2}{x-6}$,
(1)点(3,14)在函数的图象上吗?;
(2)当x=4时,求g(x)的值;
(3)当g(x)=2时,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x>0,f(x)<x”的否定形式是(  )
A.?x>0,f(x)≥xB.?x≤0,f(x)≥xC.?x0>0,f(x0)≥x0D.?x0≤0,f(x0)≥x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.圆C的极坐标方程为$ρ=2\sqrt{2}cos(θ+\frac{3}{4}π)$,极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,且长度单位相同,直线l的参数方程为$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).
(1)求C的直角坐标方程及圆心的极坐标
(2)l与C交于A,B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平行四边形ABCD中,AC=5,BD=4,则$\overrightarrow{AB}$•$\overrightarrow{BC}$=(  )
A.$\frac{41}{4}$B.-$\frac{41}{4}$C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x-1-2sinπx的所有零点之和等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列说法正确的是③④⑤.(只填正确说法序号)
①若集合A={y|y=x-1},B={y|y=x2-1},则A∩B={(0,-1),(1,0)};
②y=$\sqrt{x-3}$+$\sqrt{2-x}$是函数解析式;
③y=$\frac{\sqrt{1{-x}^{2}}}{1-|3-x|}$是非奇非偶函数;
④若函数f(x)在(-∞,0],[0,+∞)都是单调增函数,则f(x)在(-∞,+∞)上也是增函数;
⑤幂函数y=xα的图象不经过第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\frac{ax+1}{x+2}(a∈R)$,则“f(2)<f(3)”是“f(x)在区间(-2,+∞)上单调递增”的什么条件.(  )
A.“充要”B.“充分不必要”
C.“必要不充分”D.“既不充分也不必要”

查看答案和解析>>

同步练习册答案