精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形中,的中点,现将折起,使得平面及平面都与平面垂直.

1)求证:平面

2)求二面角的余弦值.

【答案】1)证明见解析;(2.

【解析】

1)过点,过点,连接,利用面面垂直的性质定理证明平面平面,可得出,并证明出,可证明出四边形为平行四边形,于是有,再利用直线与平面平行的判定定理可证明出平面

2)以为原点,轴,轴,建立空间直角坐标系,利用空间向量法可计算出二面角的余弦值.

1)过点,过点,连接.

平面及平面都与平面垂直,

平面平面平面平面,同理可证平面.

矩形中,全等,.

四边形是平行四边形,.

平面平面平面

2)矩形中,,以为原点,轴,轴,建立空间直角坐标系

设平面的法向量为,则,即

,得,则

易得平面的法向量为

因此,二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设曲线交于点,曲线轴交于点,求线段的中点到点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为:,经过点,倾斜角为的直线l与曲线C交于AB两点

I)求曲线C的直角坐标方程和直线l的参数方程;

)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】图()是某品牌汽车年月销量统计图,图()是该品牌汽车月销量占所属汽车公司当月总销量的份额统计图,则下列说法错误的是(

A.该品牌汽车年全年销量中,月份月销量最多

B.该品牌汽车年上半年的销售淡季是月份,下半年的销售淡季是月份

C.年该品牌汽车所属公司月份的汽车销量比月份多

D.该品牌汽车年下半年月销量相对于上半年,波动性小,变化较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励职员工作热情,某公司对每位职员一年来的工作业绩按月进行考评打分;年终按照职员的月平均值评选公司最佳职员并给予相应奖励.已知职员一年来的工作业绩分数的茎叶图如图所示:

1)根据职员的业绩茎叶图求出他这一年的工作业绩的中位数和平均数;

2)若记职员的工作业绩的月平均数为.

①已知该公司还有6位职员的业绩在100以上,分别是,在这6人的业绩里随机抽取2个数据,求恰有1个数据满足(其中)的概率;

②由于职员的业绩高,被公司评为年度最佳职员,在公司年会上通过抽奖形式领取奖金.公司准备了9张卡片,其中有1张卡片上标注奖金为6千元,4张卡片的奖金为4千元,另外4张的奖金为2千元.规则是:获奖职员需要从9张卡片中随机抽出3张,这3张卡片上的金额数之和就是该职员所得奖金.记职员获得的奖金为(千元),求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,将曲线向左平移个单位长度得到曲线.

(1)求曲线的参数方程;

(2)已知为曲线上的动点, 两点的极坐标分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为,曲线的参数方程为:为参数),为直线上距离为的两动点,点为曲线上的动点且不在直线上.

1)求曲线的普通方程及直线的直角坐标方程.

2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽(约3世纪初)在为《周牌算经》作注时验证勾股定理的示意图,现在提供6种不同的颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂同色的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平行四边形中,分别是的中点,将沿着向上翻折到的位置,连接.

1)求证:平面

2)若翻折后,四棱锥的体积,求的面积.

查看答案和解析>>

同步练习册答案