精英家教网 > 高中数学 > 题目详情
假定某人每次射击命中目标的概率均为,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.
【答案】分析:(1)此人至少命中目标2次包括命中目标2次与3次,分别计算概率,利用互斥事件概率公式,可得结论;
(2)求得X的可能取值,求出相应的概率,可得分布列,从而可求X的数学期望.
解答:解:(1)设此人至少命中目标2次的事件为A,则
即此人至少命中目标2次的概率为.…(4分)
(2)由题设知X的可能取值为0,1,2,3,且,…(8分)
∴X的分布列为
 X 0 1 2 3
 P    
从而.…(10分)
点评:本题考查互斥事件概率公式,考查随机变量的数学期望,确定变量的取值,正确求概率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏三模)假定某人每次射击命中目标的概率均为
12
,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省苏北四市高三第三次模拟考试数学试卷(解析版) 题型:解答题

(本小题满分10分)

假定某人每次射击命中目标的概率均为,现在连续射击3次。

(1)  求此人至少命中目标2次的概率;

(2)  若此人前3次射击都没有命中目标,再补射一次后结束射击;否则。射击结束。记此人射击结束时命中目标的次数为X,求X的数学期望。

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

假定某人每次射击命中目标的概率均为数学公式,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省苏北四市高考数学三模试卷(解析版) 题型:解答题

假定某人每次射击命中目标的概率均为,现在连续射击3次.
(1)求此人至少命中目标2次的概率;
(2)若此人前3次射击都没有命中目标,再补射一次后结束射击;否则.射击结束.记此人射击结束时命中目标的次数为X,求X的数学期望.

查看答案和解析>>

同步练习册答案