精英家教网 > 高中数学 > 题目详情
5.已知角α的终边经过点P(4,-3),则sinα+cosα=$\frac{1}{5}$.

分析 由条件利用任意角的三角函数的定义,求得sinα和cosα的值,可得sinα+cosα的值.

解答 解:由于角α的终边经过点P(4,-3),则x=4、y=-3、r=|OP|=5,
∴sinα=$\frac{y}{r}$=-$\frac{3}{5}$,cosα=$\frac{x}{r}$=$\frac{4}{5}$,∴sinα+cosα=$\frac{1}{5}$,
故答案为:$\frac{1}{5}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知$a>b>0,a+b=1,x=-{(\frac{1}{a})^b},y=1o{g_{ab}}(\frac{1}{a}+\frac{1}{b}),z=1o{g_b}\frac{1}{a}$,则(  )
A.x<z<y??B.x<y<z??C.z<y<x??D.x=y<z??

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合$A=\left\{{x{{\left|{({\frac{1}{2}})}\right.}^x}>1}\right\}$,集合B={x|lgx<0}则A∩B(  )
A.{x|x<0}B.{x|0<x<1}C.{x|x>1}D.φ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.抛物线C:y2=2x的准线方程是x=-$\frac{1}{2}$,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则$|{\overrightarrow{AF}}|+|{\overrightarrow{BF}}|$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知-1<a<b<2,则2a-b的范围是(-4,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知t为常数,函数y=|x2-4x+t|在区间[0,3]上的最大值为3,则t=1或3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A={x|a<x<3+a},B={x|x≤-1或x≥1};
(1)若A∪B=R,求实数a的取值范围;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是定义在R上的不恒为零的函数,且对于任意实数x,y满足:f(2)=2,f(xy)=xf(y)+yf(x),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),考查下列结论:
①f(1)=1;②f(x)为奇函数;③数列{an}为等差数列;④数列{bn}为等比数列.
以上命题正确的是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在以O为圆心,1为半径的圆上均匀、依次分布有六点,分别记为:A、B、C、D、E、F.
(1)点P是圆O上运动的任意一点,试求|PA|≥1的概率;
(2)在A、B、C、D、E、F六点中选择不同的三点构成三角形,其面积记为S,试求S=$\frac{{\sqrt{3}}}{2}$和S=$\frac{{\sqrt{3}}}{4}$的概率.

查看答案和解析>>

同步练习册答案