精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+1|.
(Ⅰ) 解不等式f(x+8)≥10﹣f(x);
(Ⅱ) 若|x|>1,|y|<1,求证:f(y)<|x|f( ).

【答案】(Ⅰ)解:原不等式即为|x+9|≥10﹣|x+1|. 当x<﹣9时,则﹣x﹣9≥10+x+1,解得x≤﹣10;
当﹣9≤x≤﹣1时,则x+9≥10+x+1,此时不成立;
当x>﹣1时,则x+9≥10﹣x﹣1,解得x≥0.
所以原不等式的解集为{x|x≤﹣10或x≥0}.
(Ⅱ)证明:要证 ,即 ,只需证明
则有 = =
= =
因为|x|2>1,|y|2<1,则 =
所以 ,原不等式得证
【解析】(Ⅰ) 分类讨论,解不等式f(x+8)≥10﹣f(x);(Ⅱ)利用分析法证明不等式.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)求函数f(x)的单调区间;
(2)当a≠0时,过原点分别作曲线y=f(x)与y=g(x)的切线l1 , l2 , 已知两切线的斜率互为倒数,证明: <a<
(3)设h(x)=f(x+1)+g(x),当x≥0,h(x)≥1时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 均为等边三角形, .

(Ⅰ)求证: 平面
(Ⅱ)求直线 与平面 所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;

(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组的对应数据:

据此计算出的回归方程为.

(i)求参数的估计值;

(ii)若把回归方程当作的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家 和3个欧洲国家 中选择2个国家去旅游.
(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括 但不包括 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.

组号

分组

频率

1

[160,165)

0.05

2

0.35

3

0.3

4

0.2

5

0.1

合计

1.00

Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;

Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;

试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对应的边分别为a,b,c,且 .
(1)求角B的大小;
(2)若b= ,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点为圆心的圆过点线段的垂直平分线交圆于点,

(1)求直线的方程; (2)求圆的方程。

(3)设点在圆上,试探究使的面积为 8 的点共有几个?证明你的结论

查看答案和解析>>

同步练习册答案