分析 设f(x)=ax+b(a≠0),得到f(f(f(x)))=a3x+a2b+ab+b,利用系数相等得到方程组,解出即可.
解答 解:因为f(x)为一次函数,
所以设f(x)=ax+b(a≠0),
f(f(x))=a(ax+b)+b=a2x+ab+b,
f(f(f(x)))=a(a2x+ab+b)+b=a3x+a2b+ab+b,
根据题意,a3x+a2b+ab+b=27x+26,
所以,$\left\{\begin{array}{l}{a^3=27}\\{b(a^2+a+1)=26}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=3}\\{b=2}\end{array}\right.$,
因此,f(x)=3x+2.
点评 本题主要考查了函数解析式的求解,对于函数类型已知的情况可以运用待定系数法求解析式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}π$ | B. | $\frac{4}{5}π$ | C. | $\frac{3}{4}π$ | D. | $\frac{2}{3}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,3) | B. | [-2,3) | C. | (-2,3] | D. | [-2,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com