精英家教网 > 高中数学 > 题目详情
7.若f(f(f(x)))=27x+26,求一次函数f(x)的解析式.

分析 设f(x)=ax+b(a≠0),得到f(f(f(x)))=a3x+a2b+ab+b,利用系数相等得到方程组,解出即可.

解答 解:因为f(x)为一次函数,
所以设f(x)=ax+b(a≠0),
f(f(x))=a(ax+b)+b=a2x+ab+b,
f(f(f(x)))=a(a2x+ab+b)+b=a3x+a2b+ab+b,
根据题意,a3x+a2b+ab+b=27x+26,
所以,$\left\{\begin{array}{l}{a^3=27}\\{b(a^2+a+1)=26}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=3}\\{b=2}\end{array}\right.$,
因此,f(x)=3x+2.

点评 本题主要考查了函数解析式的求解,对于函数类型已知的情况可以运用待定系数法求解析式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.计算:16${\;}^{\frac{1}{2}}$+lg2+lg5=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知复数z满足|z|=$\frac{1}{2}$
(1)求|4z-$\frac{1}{z}$|的取值范围
(2)若ω=3-zi.求复数ω对应点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.己知△ABC的三个内角A,B,C所对的边是a,b,c,且$\frac{cosA}{cosB}$=-$\frac{a}{b+2c}$,则角A的大小为(  )
A.$\frac{1}{2}π$B.$\frac{4}{5}π$C.$\frac{3}{4}π$D.$\frac{2}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在△ABC中,内角A,B,C的对边分别为a,b,c.B=$\frac{π}{3}$
(1)若2sinA=sinC,求角A的大小
(2)若sinAsinC=$\frac{1}{2}$$\overrightarrow{BA}$•$\overrightarrow{BC}$=3,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,圆C:x2+y2+4x-2y+m=0与直线x-$\sqrt{3}$y+$\sqrt{3}$-2=0相切.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C上有两点M,N关于直线x+2y=0对称,且|MN|=2$\sqrt{3}$,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据函数f(x)=x2-1在区间[-2,2]上的图象和特点,指出此函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若存在实数x,使f(x)=x,则称x为f(x)的不动点.已知f(x)=$\frac{2x+a}{x+b}$有两个关于原点对称的不动点.
(1)求a,b须满足的充要条件;
(2)试用y=f(x)和y=x的图形表示上述两个不动点的位置(画草图).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.角θ的终边过点(3a-9,a+2),且sin2θ≤0,则a的范围是(  )
A.(-2,3)B.[-2,3)C.(-2,3]D.[-2,3]

查看答案和解析>>

同步练习册答案