精英家教网 > 高中数学 > 题目详情
如图椭圆C的方程为,A是椭圆C的短轴左顶点,过A点作斜率为-1的直线交椭圆于B点,点P(1,0),且BP∥y轴,△APB的面积为
(1)求椭圆C的方程;
(2)在直线AB上求一点M,使得以椭圆C的焦点为焦点,且过M的双曲线E的实轴最长,并求此双曲线E的方程.
【答案】分析:(1)先根据△APB的面积为,以及AB斜率为-1,求出A,B,P的坐标,再把A,B坐标代入椭圆C的方程,求出a,b的值即可.
(2)由(1)知椭圆C的焦点坐标,以及在直线AB的方程,因为M在双曲线E上,要双曲线E的实轴最大,只须||MF1|-|MF2||最大,找到||MF1|-|MF2|的范围,求最值即可.
解答:解:(1),又∠PAB=45°,AP=PB,故AP=BP=3.
∵P(1,0),A(-2,0),B(1,-3)
∴b=2,将B(1,-3)代入椭圆得:得a2=12,
所求椭圆方程为
(2)设椭圆C的焦点为F1,F2
则易知F1(0,-)F2(0,),
直线AB的方程为:x+y+2=0,因为M在双曲线E上,要双曲线E的实轴最大,只须||MF1|-|MF2||最大,设F1(0,-)关于直线AB的对称点为F1'(-2,-2),则直线F2F1′与直线的交点为所求M,
因为F2F1′的方程为:,联立得M(1,-3)
又2a′=||MF1|-|MF2||=||MF1'|-|MF2||≤|F2F1'|
==2,故
故所求双曲线方程为:
点评:本题考查了直线与椭圆,双曲线的位置关系,做题时要细心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图椭圆C的方程为
y2
a2
+
x2
b2
=1(a>b>0)
,A是椭圆C的短轴左顶点,过A点作斜率为-1的直线交椭圆于B点,点P(1,0),且BP∥y轴,△APB的面积为
9
2

(1)求椭圆C的方程;
(2)在直线AB上求一点M,使得以椭圆C的焦点为焦点,且过M的双曲线E的实轴最长,并求此双曲线E的方程.

查看答案和解析>>

科目:高中数学 来源:湖南省2007届高三十校联考第一次考试-文科数学 题型:038

如图椭圆C的方程为,A是椭圆C的短轴左顶点,过A点作斜率为-1的直线交椭圆于B点,点P(1,0),且BP∥y轴,△APB的面积为

(1)求椭圆C的方程;

(2)在直线AB上求一点M,使得以椭圆C的焦点为焦点,且过M的双曲线E的实轴最长,并求此双曲线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图椭圆C的方程为,A是椭圆C的短轴左顶点,过A点作斜率为﹣1的直线交椭圆于B点,点P(1,0),且BP∥y轴,△APB的面积为

(1)求椭圆C的方程;

(2)在直线AB上求一点M,使得以椭圆C的焦点为焦点,且过M的双曲线E的实轴最长,并求此双曲线E的方程.

查看答案和解析>>

科目:高中数学 来源:2006-2007学年湖南省十校高三3月联考数学试卷(文科)(解析版) 题型:解答题

如图椭圆C的方程为,A是椭圆C的短轴左顶点,过A点作斜率为-1的直线交椭圆于B点,点P(1,0),且BP∥y轴,△APB的面积为
(1)求椭圆C的方程;
(2)在直线AB上求一点M,使得以椭圆C的焦点为焦点,且过M的双曲线E的实轴最长,并求此双曲线E的方程.

查看答案和解析>>

同步练习册答案