分析 将sinα+cosα=$\frac{1}{3}$两边平方,利用平方关系化简求出2sinαcosα的值,根据三角函数的符号缩小α的范围,判断出sinα-cosα的符号,利用平方关系求出sinα-cosα的值.
解答 解:∵sinα+cosα=-$\frac{1}{3}$,两边平方可得:1+2sinαcosα=$\frac{1}{9}$,解得:2sinαcosα=-$\frac{8}{9}$<0,
又∵0<α<π,
∴$\frac{π}{2}$<α<π,
则sinα-cosα>0,
所以sinα-cosα=$\sqrt{(sinα-cosα)^{2}}$=$\sqrt{1-(-\frac{8}{9})}$=$\frac{\sqrt{17}}{3}$.
点评 本题考查同角三角函数的平方关系,以及三角函数的符号,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com