精英家教网 > 高中数学 > 题目详情

【题目】在正三棱柱中, ,点的中点.

(I)求证:

(II)若点上的点且满足若二面角的余弦值为求实数的值.

【答案】(Ⅰ)见解析(Ⅱ)

【解析】试题分析:连接,则的中点连接,则,由此能证明平面.
,则 平面,过 ,垂足为,连,则为二面角的一个平面角.由此利用二面角的余弦值为余弦值为,可求实数的值.

试题解析:(Ⅰ)证明,连接,则的中点

连接,则平面

所以平面

(Ⅱ)方法一:过 ,则 平面,过 ,垂足为,连,则 ,所以为二面角的一个平面角.

,则,所以,所以

因为, 所以

,解得

此时, 点的中点,所以

方法二:建立如图所示空间直角坐标系,过,则平面,设,则 所以

依题意为平面的一个法向量,

为平面一个法向量,

则由可得

所以解得,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在,发布成绩使用等级制各等级划分标准见下表,规定: 三级为合格等级, 为不合格等级.

百分制

分及以上

分到

分到

分以下

等级





为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计,按照的分组作出频率分布直方图如图所示,样本中分数在分及以上的所有数据的茎叶图如图所示.

1)求和频率分布直方图中的的值;

2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生任选,求至少有人成绩是合格等级的概率;

3)在选取的样本中,两个等级的学生中随机抽取了名学生进行调研,表示所抽取的名学生中为等级的学生人数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差不为零,a1=25,且a1 , a11 , a13成等比数列.
(1)求{an}的通项公式;
(2)求a1+a4+a7+…+a3n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<α< <β<π,tan ,cos(β﹣α)=
(1)求sinα的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c.
(1)若f(﹣1)=0,f(0)=0,求出函数f(x)的零点;
(2)若f(x)同时满足下列条件:①当x=﹣1时,函数f(x)有最小值0,②f(1)=1求函数f(x)的解析式;
(3)若f(1)≠f(3),证明方程f(x)= [f(1)+f(3)]必有一个实数根属于区间(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程是是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)判断直线与曲线的位置关系;

(2)过直线上的点作曲线的切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知椭圆的短轴长为,且与抛物线有共同的焦点,椭圆的左顶点为A,右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点.

I)求椭圆的方程;

)求线段的长度的最小值;

)在线段的长度取得最小值时,椭圆上是否存在一点,使得的面积为,若存在求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式.
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCD为正方形,P为平面ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC,平面PAB与平面PAD的位置关系是(
A.平面PAB与平面PAD,PBC垂直
B.它们都分别相交且互相垂直
C.平面PAB与平面PAD垂直,与平面PBC相交但不垂直
D.平面PAB与平面PBC垂直,与平面PAD相交但不垂直

查看答案和解析>>

同步练习册答案