精英家教网 > 高中数学 > 题目详情
4.已知抛物线C:y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A,B两点.
(1)若$\overrightarrow{FA}•\overrightarrow{FB}$=-11,求直线AB的方程;
(2)求△ABF面积的最小值.

分析 (1)不妨设点A在x轴上方,分直线的斜率存在和不存在两种情况,分别直线和抛物线的位置关系即可求出,
(2)分别求出直线的斜率存在和不存在,两种情况的三角形的面积,比较即可得到答案.

解答 解:(1)不妨设点A在x轴上方,
①当直线AB的斜率不存在时,直线方程为x=2,
此时将x=2代入抛物线C:y2=4x中,得y2=8,解得$y=±2\sqrt{2}$,
所以点A,B的坐标分别为$({2,2\sqrt{2}}),({2,-2\sqrt{2}})$,
又焦点F的坐标为(1,0),则$\overrightarrow{FA}=({1,2\sqrt{2}}),\overrightarrow{FB}=({1,-2\sqrt{2}})$,
所以$\overrightarrow{FA}•\overrightarrow{FB}=({1,2\sqrt{2}})•({1,-2\sqrt{2}})=1-8=-7$,不满足$\overrightarrow{FA}•\overrightarrow{FB}=-11$,故舍去;
②当直线AB的斜率存在时,设斜率为k显然k≠0,故直线AB方程为y=k(x-2).
设点A(x1,y1),B(x2,y2)(y1>0,y2<0),
联立$\left\{\begin{array}{l}y=k({x-2})\\{y^2}=4x\end{array}\right.$,消去y,得k2x2-(4k2+4)x+4k2=0,且△=32k2+16>0,
则由韦达定理,得${x_1}+{x_2}=\frac{{4{k^2}+4}}{k^2},{x_1}{x_2}=4$,
所以${y_1}{y_2}=({2\sqrt{x_1}})({-2\sqrt{x_2}})$=$-4\sqrt{{x_1}{x_2}}=-8$,
又焦点F的坐标为(1,0),
所以$\overrightarrow{FA}•\overrightarrow{FB}=({{x_1}+{x_2}})+1+{y_1}{y_2}=({{x_1}-1,{y_1}})•({{x_1}-1,{x_2}})={x_1}+{x_2}-({{x_1}+{x_2}})+1+{y_1}+{y_2}$=$4-\frac{{4{k^2}+4}}{k^2}+1+({-8})=-\frac{4}{k^2}-7$.
由题意,$-\frac{4}{k^2}-7=-11$,解得k=±1,
所以直线AB方程为y=x-2或y=-x+2,即x-y-2=0或x+y-2=0.
(2)①当直线AB的斜率不存在时,由(1)得,点A,B的坐标分别为$({2,2\sqrt{2}}),({2,-2\sqrt{2}})$,
所以△ABF的面积为$S=\frac{1}{2}×|{PF}|×|{{y_1}-{y_2}}|=\frac{1}{2}|{{y_1}-{y_2}}|=\frac{1}{2}|{2\sqrt{2}-({-2\sqrt{2}})}|=2\sqrt{2}$;
②当直线AB的斜率存在时,设斜率为k显然k≠0,由(1)得,${x_1}+{x_2}=\frac{{4{k^2}+4}}{k^2},{x_1}{x_2}=4$,
所以△ABF的面积为$S=\frac{1}{2}×|{PF}|×|{{y_1}-{y_2}}|=\frac{1}{2}|{{y_1}-{y_2}}|=\frac{1}{2}\sqrt{y_1^2+y_2^2-2{y_1}{y_2}}=\frac{1}{2}\sqrt{4{x_1}+4{x_2}-2×2\sqrt{x_1}×({-2\sqrt{x_2}})}$
=$\frac{1}{2}\sqrt{4({{x_1}+{x_2}})+8\sqrt{{x_1}{x_2}}}=\frac{1}{2}\sqrt{4•\frac{{4{k^2}+4}}{k^2}+8\sqrt{4}}=\frac{1}{2}\sqrt{\frac{16}{k^2}+32}>\frac{1}{2}\sqrt{32}=2\sqrt{2}$.
综上所述,△ABF面积的最小值为$2\sqrt{2}$.

点评 本题考查考查了抛物线的定义与简单几何性质、直线与抛物线位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.当实数a在区间[1,6]随机取值时,函数f(x)=-x2+ax+1在区间(2,+∞)上是单调减函数的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知△ABC的三边长a、b、c成等比数列,边长a、b、c所对的角依次为A、B、C,则sinB的取值范围是$({0,\frac{{\sqrt{3}}}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知有1张假纸币和4张不同面值的真纸币,现需要通过权威检测工具找出假纸币,将假纸币上交银行,每次随机检测一张纸币,检测后不放回,直到检测出假纸币或者检测出4张真纸币时,检测结束.
(Ⅰ)求第1次检测的纸币是假纸币的概率;
(Ⅱ)求第3次检测的纸币是假纸币的概率;
(Ⅲ)若每检测一张纸币需要2分钟,设X表示检测结束所需要的时间,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={(x,y)|y=x+1},B={(x,y)|y=4-2x},则A∩B=(  )
A.{(1,2)}B.(1,2)C.{1,2}D.{(1,2),(-1,-2)}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在⊙O的直径AB的延长线上取点P,作⊙O的切线PN,N为切点,在AB上找一点M,使PN=PM,连接NM并延长交⊙O于点C.
(1)求证:OC⊥AB;
(2)若⊙O的半径为$2\sqrt{3}$,OM=MP,求MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线x2-y2=1的右半支与直线x=100围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是9800.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,过⊙O外一点E作⊙O的两条切线EA、EB,其中A、B为切点,BC为⊙O的一条直径,连CA并延长交BE的延长线于D点.
(Ⅰ)证明:BE=DE;
(Ⅱ)若AD=3AC,求AE:AC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC内接于⊙O,BE是⊙O的直径,AD是BC边上的高.求证:BA•AC=BE•AD.

查看答案和解析>>

同步练习册答案