精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的首项a1=1,?n∈N*,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{{a}_{n}}{n}$}的前n项和Sn
(3)求证:?n∈N*,a12+a22+a32+…+an2<3.

分析 (1)通过对an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$变形同时取倒数,整理可知数列{$\frac{1}{{a}_{n}}$}是首项为1、公差为$\frac{1}{2}$的等差数列,进而计算可得结论;
(2)通过(1)裂项可知$\frac{{a}_{n}}{n}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),进而并项相加即得结论;
(3)通过(2)放缩、裂项可知${{a}_{n}}^{2}$<2($\frac{1}{n}$-$\frac{1}{n+2}$),进而并项相加即得结论.

解答 (1)解:∵an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{2+{a}_{n}}{2{a}_{n}}$=$\frac{1}{2}$+$\frac{1}{{a}_{n}}$,
又∵$\frac{1}{{a}_{1}}$=1,
∴数列{$\frac{1}{{a}_{n}}$}是首项为1、公差为$\frac{1}{2}$的等差数列,
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{n+1}{2}$,
∴an=$\frac{2}{n+1}$;
(2)解:由(1)可知,$\frac{{a}_{n}}{n}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$;
(3)证明:由(2)可知,${{a}_{n}}^{2}$=$\frac{4}{(n+1)^{2}}$<$\frac{4}{n(n+2)}$=2($\frac{1}{n}$-$\frac{1}{n+2}$),
∴a12+a22+a32+…+an2<2(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=2(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=3-2($\frac{1}{n+1}$+$\frac{1}{n+2}$)
<3.

点评 本题是一道关于数列与不等式的综合题,考查数列的通项,考查放缩法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若一元二次不等式x2-$\frac{2}{\sqrt{a}}$x+1-$\frac{1}{b}$>0(b>a)的解集为{x|x≠$\frac{1}{\sqrt{a}}$},则$\frac{4}{a-1}$+$\frac{16}{b-1}$的最小值为(  )
A.16B.25C.36D.49

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=$\sqrt{4x-{x}^{2}-4}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知O为坐标原点,实数x,y满足$\left\{\begin{array}{l}{x-y+1≤0}\\{3x+4y≤12}\\{x-1≥0}\end{array}\right.$,P(x,y)为该不等式组所表示的平面区域内任意一点,使z=x+2y取最大值的点为A点,则|OP|•|AO|•cos∠AOP的最大值等于(  )
A.$\frac{97}{16}$B.$\frac{11}{2}$C.$\frac{167}{28}$D.$\frac{38}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在Rt△ABC中,∠CAB=90°,AB=2,AC=$\frac{\sqrt{2}}{2}$,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变,求曲线E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.实数x,y,z满足x2-2x+y=z-1且x+y2+1=0,则x,y,z满足的下列关系式为(  )
A.z≥y>xB.z≥x>yC.x>z≥yD.z>x≥y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,直线y=x-2与圆x2+y2-4x+3=0及抛物线y2=8x依次交于A、B、C、D四点,则|AB|+|CD|=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$=(-1,2),$\overrightarrow b$=(λ,1)
(1)若$\overrightarrow a$⊥$\overrightarrow b$,求λ的值.
(2)若$\overrightarrow a$∥$\overrightarrow b$,求λ的值,并判断此时是同向还是反向.
(3)若$\overrightarrow a$与$\overrightarrow b$所成夹角为锐角,求λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数m(x)=$\left\{\begin{array}{l}{{x}^{2},{x}^{2}≤{2}^{x}}\\{{2}^{x},{2}^{x}<{x}^{2}}\end{array}\right.$,则m(x)的最小值为(  )
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步练习册答案