精英家教网 > 高中数学 > 题目详情
20.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高二年级有男生1000人,女生800人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频数统计表如下:
表一:男生  
等级优秀合格尚待改进
频数15x    5
表二:女生
等级优秀合格尚待改进
频数 15  3  y
(1)计算x,y的值;
(2)由表一表二中统计数据完成下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生女生总计
优秀151530
非优秀
总计45

分析 (1)根据条件知道从男生和女生各自抽取的人数,做出频率分布表中的未知数;
(2)根据所给的条件写出列联表,根据列联表做出观测值,把观测值同临界值进行比较,得到没有90%的把握认为“测评结果优秀与性别有关”.

解答 解:(1)设从高一年级男生中抽取m人,则有:$\frac{m}{1000}=\frac{45}{1000+800}$
解得:m=25,…(2分)
∴从高一年级女生中抽取20人,
∴x=25-20=5,y=20-18=2;                …(4分)
(2)由(1)得2×2列联表为

男生女生总计
优秀151530
非优秀10515
总计252045
∵${k^2}=\frac{{45{{(15×5-15×10)}^2}}}{30×15×25×20}=\frac{9}{8}=1.125<2.706$,…(8分)
∴没有90%的把握认为“测评结果优秀与性别有关”.       …(10分)

点评 本题主要考查独立性检验的应用,解题的关键是正确运算出观测值,理解临界值对应的概率的意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知定义在区间[-1,1]上的函数f(x)=$\frac{ax}{1+{x}^{2}}$,且f(1)=-1.
(1)求实数a的值;
(2)证明:函数f(x)在区间(-1,1)上单调递减;
(3)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式|3x-1|<5的解集是(-$\frac{4}{3}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a≤2,求y=(x-2)|x|在[a,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用五个数字0、1、1、2、2组成的五位数总共有(  )
A.24个B.30个C.36个D.48个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过曲线y=xex上横坐标为1的点的切线方程为(  )
A.2ex-y-e=0B.ex-y=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响,现调查了某市500名居民的工作场所好呼吸系统健康,得到2×2列联表如下:
室外工作室内工作合计
有呼吸系统疾病150
无呼吸系统疾病100
合计200
(1)补全2×2列联表;
(2)判断是否在范错误的概率不超过0.05的前提下认为感染呼吸系统疾病与工作场所有关.
公式与临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,F是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为$\frac{1}{2}$.点C在x轴上,BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:$x+\sqrt{3}y+3=0$相切.则椭圆的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的一个焦点与短轴的两个端点的连线构成等边三角形,直线x+$\sqrt{2}$y-2$\sqrt{3}$=0与以椭圆C的右焦点F为圆心,以椭圆的短半轴长为半径的圆相切
(1)求椭圆C的方程;
(2)过定点D(0,2),且斜率为k的直线l与椭圆C相当于M、N两点
①若线段MN的中点的横坐标为1,求直线l的方程;
②若点F在以MN为直径的圆内部,求实数k的取值范围.

查看答案和解析>>

同步练习册答案