精英家教网 > 高中数学 > 题目详情
7.设F1、F2分别为双曲线$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的左右焦点,M是双曲线的右支上一点,则△MF1F2的内切圆圆心的横坐标为(  )
A.2B.3C.4D.5

分析 根据双曲线的性质,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=6,转化为|HF1|-|HF2|=6,从而求得点H的横坐标.

解答 解:如图所示:F1(-5,0)、F2(5,0),
设内切圆与x轴的切点是点H,PF1、PF2与内切圆的切点分别为M、N,
∵由双曲线的定义可得|PF1|-|PF2|=2a=8,
由圆的切线长定理知,|PM|=|PN|,故|MF1|-|NF2 |=8,
即|HF1|-|HF2|=8,
设内切圆的圆心横坐标为x,则点H的横坐标为x,
故 (x+5)-(5-x)=8,
∴x=4.
故选:C.

点评 本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想,正确运用双曲线的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.复数i(3+4i)=(  )
A.-4+3iB.4+3iC.3-4iD.3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若3e1=e2,则e1=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+3,x>-1}\\{{2}^{x+1}-1,x≤-1}\end{array}\right.$,已知f(a)=3,则a的值是(  )
A.0B.-2C.0或-2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2cos2x+$\sqrt{3}$sin2x,x∈R.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈($\frac{π}{12}$,$\frac{π}{3}$)时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.利用夹逼准则求极限$\underset{lim}{n→∞}$$\frac{{2}^{n}}{n!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)对任意实数x,y均有f(x)=f($\frac{x+y}{2}$)+f($\frac{x-y}{2}$).当x>0时,f(x)>0
(1)判断函数f(x)在R上的单调性并证明;
(2)设函数g(x)与函数f(x)的奇偶性相同,当x≥0时,g(x)=|x-m|-m(m>0),若对任意x∈R,不等式g(x-1)≤g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某几何体的三视图如图所示,则该几何体的体积是$\frac{32}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数,是偶函数,且周期为π的是(  )
A.y=cos2x-sin2xB.y=sin2x+cos2xC.y=cos2x-sin2xD.y=sin2x+cosx

查看答案和解析>>

同步练习册答案