精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,在此棱锥的侧面、底面及对角面PAC和PBD中任取两个面,这两个面互相垂直的概率为
1
3
1
3
分析:从中中任取两个面的方法有C72 种,用一一列举的方法求出其中互相垂直的平面共有7对,由此求得这两个面互相垂直的概率.
解答:解:由题意可得此棱锥的4个侧面、底面及对角面PAC和PBD共有7个平面,从中中任取两个面的方法有C72=21 种,
其中互相垂直的平面有 PAB⊥PAD,PAB⊥PBC,PAD⊥PCD,PAC⊥PBD,PAC⊥ABCD,PAB⊥ABCD,PAD⊥ABCD,共有7对,
故这两个面互相垂直的概率为
7
21
=
1
3

故答案为:
1
3
点评:本题主要考查等可能事件的概率,找出其中互相垂直的平面共有7对,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案