【题目】在平面直角坐标系xOy中,双曲线:经过点,其中一条近线的方程为,椭圆:与双曲线有相同的焦点椭圆的左焦点,左顶点和上顶点分别为F,A,B,且点F到直线AB的距离为.
求双曲线的方程;
求椭圆的方程.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数且 )曲线的参数方程为(为参数,且),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为: ,曲线的极坐标方程为.
(1)求与的交点到极点的距离;
(2)设与交于点,与交于点,当在上变化时,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,两焦点分别为双曲线的顶点,直线与椭圆交于A,B两点,且点A的坐标为,点Р是椭圆上异于A,B的任意一点,点Q满足,,且A,B,Q三点不共线.
(1)求椭圆的方程;
(2)求点Q的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+﹣1,a∈R.
(1)当a>0时,若函数f(x)在区间[1,3]上的最小值为,求a的值;
(2)讨论函数g(x)=f′(x)﹣零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,半径为2的切直线MN于点P,射线PK从PN出发绕点P逆时针方向旋转到PM,旋转过程中,PK交于点Q,设为x,弓形PmQ的面积为,那么的图象大致是
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com