精英家教网 > 高中数学 > 题目详情
16.已知函数y=a-bcosx(b>0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,求函数y=-2asinbx的最大值和最小值.

分析 由三角函数的最值可得ab的方程组,解方程组代入函数解析式,由三角函数的最值可得.

解答 解:∵函数y=a-bcosx(b>0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,
∴$\left\{\begin{array}{l}{a-b=-\frac{1}{2}}\\{a+b=\frac{3}{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\end{array}\right.$,∴函数y=-2asinbx=-sinx,
∴最大值和最小值分别为1,-1.

点评 本题考查三角函数的最值,涉及待定系数法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}$.
(I)若a>b>1,试比较f(a)与f(b)的大小;
(Ⅱ)若函数g(x)=f(x)-($\frac{1}{2}$)x+m,且g(x)在区间[3,4]上没有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,tanA=$\frac{1}{3}$,B=$\frac{π}{4}$.若椭圆E以AB为长轴,且过点C,则椭圆E的离心率是$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平行四边形ABCD中,∠CBD=90°,BC=BD=1,将平行四边形沿对角线BD折成60°的二面角(如图中实线部分).求:
(Ⅰ)A、C两点间的距离;
(Ⅱ)异面直线AC与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果角α的终边经过点P(sin780°,cos(-330°)),则sinα=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明:对一切x∈(0,+∞),都有lnx>$\frac{1}{{e}^{x}}$-$\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=$\frac{2tanx}{1-tan^2x}$的最小正周期为(  )
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.正三棱柱ABC一A1B1C1的底面边长为2,D为AB上一点,如图,建立空间直角坐标系.
(1)若$\overrightarrow{{A}_{1}D}$是平面B1DC的法向量,即$\overrightarrow{{A}_{1}D}$⊥平面B1DC,求正三棱柱的侧棱长.
(2)若D为AB的中点,且$\overrightarrow{{A}_{1}D}$⊥$\overrightarrow{{CB}_{1}}$,求正三棱柱的侧棱长.
(3)在(2)情况下,在侧棱CC1上求一点N,使得cos($\overrightarrow{{DB}_{1}}$,$\overrightarrow{AN}$)=$\frac{3}{\sqrt{34}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三个点A(0,0),B(2,0),C(4,2),则△ABC的外心的纵坐标是3.

查看答案和解析>>

同步练习册答案