精英家教网 > 高中数学 > 题目详情

【题目】已知直线y=- x+5的倾斜角是直线l的倾斜角的大小的5倍,分别求满足下列条件的直线l的方程.
(1)过点P(3,-4);
(2)在x轴上截距为-2;
(3)在y轴上截距为3.

【答案】
(1)解:因为已知直线的倾斜角为,所以直线l的倾斜角为,即直线l的斜率为
所以过点P(3,-4),由点斜式方程得:

y+4= (x-3),

y x -4.


(2)解:在x轴截距为-2,即直线l过点(-2,0),

由点斜式方程得:y-0= (x+2),∴y x .


(3)解:在y轴上截距为3,由斜截式方程得y x+3.
【解析】先根据已知直线与直线l倾斜角的关系求得直线l的斜率,进而根据点斜式求得满足各条件的直线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+1满足f(﹣1)=0,且x∈R时,f(x)的值域为[0,+∞).
(1)求f(x)的表达式;
(2)设函数g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]时是单调函数,求实数k的取值范围;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(a>0,b>0)的离心率为 ,实轴长为2,直线l:x﹣y+m=0与双曲线C交于不同的两点A,B,
(1)求双曲线C的方程;
(2)若线段AB的中点在圆x2+y2=5上,求m的值;
(3)若线段AB的长度为4 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|a≤x≤a+3},B={x|x<﹣1,或x>5}.
(Ⅰ)当a=3时,求(RA)∩B;
(Ⅱ)若A∩B=,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是内角A,B,C的对边,AB=5,cos∠ABC=
(1)若BC=4,求△ABC的面积SABC;
(2)若D是边AC的中点,且BD= ,求边BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直二面角D﹣AB﹣E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE. (Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求二面角B﹣AC﹣E的余弦值;
(Ⅲ)求点D到平面ACE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l1经过点A(m,1),B(-3,4),直线l2经过点C(1,m),D(-1,m+1),当l1∥l2或l1⊥l2时,分别求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1
(3)求二面角B﹣DC﹣B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex , g(x)=mx2+ax+b,其中m,a,b∈R,e=2.71828…为自然对数的底数. (I)函数h(x)=xf (x),当a=l,b=0时,若函数h(x)与g(x)具有相同的单调区间,求m的值;
(II)记F(x)=f(x)﹣g(x).当a=2,m=0时,若函数F(x)在[﹣1,2]上存在两个不同的零点,求b的取值范围.

查看答案和解析>>

同步练习册答案