精英家教网 > 高中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论①abc>0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0;
其中正确的结论是

【答案】③④
【解析】解:∵二次函数y=ax2+bx+c(a≠0)的图象开口朝下,对称轴在y轴右侧,与y轴交于正半轴,
故a<0,b>0,c>0,故abc<0,故①错误;
由图可得:f(﹣1)<0,即a﹣b+c<0,即b>a+c,故②错误;
由图可得:f(2)>0,即4a+2b+c>0,故③正确;
由图可得:函数图象与x轴有两个交点,故△=b2﹣4ac>0,故④正确;
所以答案是:③④.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系,以及对二次函数的性质的理解,了解当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若 四个数中任取的一个数, 是从 三个数中任取的一个数,求上述方程有实根的概率;

(2)若是从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调性;

(Ⅱ)证明: 时,

(Ⅲ)比较三个数: 的大小(为自然对数的底数),请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算与求解
(1)计算:2log32﹣log3 +log38﹣5
(2)已知a>0,a≠1,若loga(2x+1)<loga (4x﹣3),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求关于的不等式的解集;

(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于函数),

(1)当时,求函数的单调区间;

(2)若在区间内有且只有一个极值点,试求的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ (a>0且a≠1)是定义在R上的奇函数.
(1)求a的值;
(2)求f(x)的值域;
(3)若关于x的方程|f(x)(2x+1)|=m有1个实根,求实数m的取值范围;
(4)当x∈(0,1]时,tf(x)≥2x﹣2恒成立,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=lg(3﹣4x+x2)的定义域为M.当x∈M时,求f(x)=2x+2﹣3×4x的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形为等腰梯形, ,四边形为正方形,平面平面.

(Ⅰ)若点是棱的中点,求证: ∥平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在线段上是否存在点,使平面平面?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案