精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,abc分别为角ABC的对边,且满足cosC+sinC

1)求角B的大小;

2)若a+c的最大值为10,求边长b的值.

【答案】1B.(2b5

【解析】

1)利用正弦定理,转化cosC+sinCsinBsinCcosBsinC+sinC,继而得到sinBcosB1,利用辅助角公式求解B即可;

2)利用正弦定理转化:a+cbsinA+bcosA,用辅助角公式化为正弦型函数求最值即可.

1cosC+sinC

bcosC+bsinCa+c

由正弦定理可得sinBcosC+sinBsinCsinA+sinC

sinAsinB+C)=sinBcosC+cosBsinC

sinBcosC+sinBsinCsinBcosC+cosBsinC+sinC

sinBsinCcosBsinC+sinC

C0π),sinC≠0

sinBcosB1,可得sinB)=1

可得sinB

B0π),B),

B,可得B

2BCA

由正弦定理可得absinAcbsinCbsinA)=bcosA

a+cbsinA+bcosAsinA≤10

A时取最大值10,此时可得b5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abc,cosB

(Ⅰ)若c=2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为

A. 2B. 3C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a58a1023

1)令,证明:数列{bn}是等比数列;

2)求数列{nbn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

(Ⅰ)试讨论的单调性;

(Ⅱ)若函数存在极值,对于任意的,存在正实数,使得 ,试判断的大小关系并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】普通高中国家助学金,用于资助家庭困难的在校高中生.在本地,助学金分一等和二等两类,一等助学金每学期1250元,二等助学金每学期750元,并规定:属于农村建档立卡户的学生评一等助学金.某班有10名获得助学金的贫困学生,其中有3名属于农村建档立卡户,这10名学生中有4名获一等助学金,另6名获二等助学金.现从这10名学生中任选3名参加座谈会.

)若事件A表示“选出的3名同学既有建档立卡户学生,又有非建档立卡户学生”,求A的概率;

)设X为选出的3名同学一学期获助学金的总金额,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市美团外卖配送员底薪是每月1800元,设每月配送单数为X,若,每单提成3元,若,每单提成4元,若,每单提成4.5元,饿了么外卖配送员底薪是每月2100元,设每月配送单数为Y,若,每单提成3元,若,每单提成4元,小想在美团外卖和饿了么外卖之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表:

表1:美团外卖配送员甲送餐量统计

日送餐量x(单)

13

14

16

17

18

20

天数

2

6

12

6

2

2

表2:饿了么外卖配送员乙送餐量统计

日送餐量x(单)

11

13

14

15

16

18

天数

4

5

12

3

5

1

(1)设美团外卖配送员月工资为,饿了么外卖配送员月工资为,当时,比较的大小关系

(2)将4月份的日送餐量的频率视为日送餐量的概率

(ⅰ)计算外卖配送员甲和乙每日送餐量的数学期望E(X)和E(Y

(ⅱ)请利用所学的统计学知识为小王作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上顶点为,以为圆心椭圆的长半轴为半径的圆与轴的交点分别为

(1)求椭圆的标准方程;

(2)设不经过点的直线与椭圆交于两点,且,试探究直线是否过定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长是短轴长的2倍,AB分别为椭圆的左顶点和下顶点,且的面积为1

1)求椭圆C的方程;

2)设点M为椭圆上位于第一象限内一动点,直线轴交于点C,直线轴交于点D,求证:四边形的面积为定值.

查看答案和解析>>

同步练习册答案