精英家教网 > 高中数学 > 题目详情
函数f(x)=2sin(
π
2
-x)是(  )
A、最小正周期为2π的奇函数
B、最小正周期为2π的偶函数
C、最小正周期为π的奇函数
D、最小正周期为4π的偶函数
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:由f(x)=2sin(
π
2
-x)=2cosx,根据余弦函数的图象和性质可知函数为最小正周期为2π的偶函数.
解答: 解:∵f(x)=2sin(
π
2
-x)=2cosx
∴由余弦函数的图象和性质可知函数为最小正周期为2π的偶函数..
故选:B
点评:本题主要考查了诱导公式的应用,和余弦函数的图象和性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在建立两个变量y与x的回归模型中,分别选择了4个不同模型,模型1-4的R2分别为0.98,0.80,0.50,0.25,则其中拟合得最好的模型是(  )
A、模型1B、模型2
C、模型3D、模型4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在复平面内,复数z1和z2对应的点分别是A和B,则
z2
z1
等于(  )
A、1+2iB、2+i
C、-1-2iD、-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:

在相距2km的A、B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则B、C两点之间的距离为(  )
A、(
3
-1)km
B、(
3
+1)km
C、
6
km
D、2(
3
+1)km

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
3
sin
πx
m
,若存在实数x0,使函数f(x)的图象关于直线x=x0对称且x02+[f(x0)]2<m2成立,则m的取值范围是(  )
A、(-1,1)
B、(-∞,-1)∪(1,+∞)
C、(-2,2)
D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

请写出求二元一次方程组
a1x+b1y=c1
a2x+b2y=c2
(a1b2-a2b1≠0)的解的算法步骤,并画出相应的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R且a≠2,定义在区间(-b,b)上的函数f(x)=lg
1+ax
1+2x
满足:f(x)+f(-x)=0.
(1)求实数a的值;
(2)求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).
(Ⅰ)求证:对任意的λ=(0,1],都有AC⊥BE;
(Ⅱ)若二面角C-BE-A的大小为120°,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某教育主管部门到一所中学检查学生的体质健康情况.从全体学生中,随机抽取12名进行体制健康测试,测试成绩(百分制)以茎叶图形式表示如下:根据学生体制健康标准,成绩不低于76的为优良.
(1)将频率视为概率,根据样本估计总体的思想,在该校学生中任选3人进行体制健康测试,求至少有1人成绩是“优良”的概率;
(2)从抽取的12人中随机选取3人,记ξ表示成绩“优良”的学生人数,求ξ的分布列及期望.

查看答案和解析>>

同步练习册答案