精英家教网 > 高中数学 > 题目详情
设二次函数f(x)=x2+x+c(c>0).若f(x)=0有两个实数根x1,x2(x1<x2).
(Ⅰ)求正实数c的取值范围;
(Ⅱ)求x2-x1的取值范围;
(Ⅲ)如果存在一个实数m,使得f(m)<0,证明:m+1>x2
分析:(Ⅰ)利用方程有两个不相等的实数根,通过判别式大于0,直接求正实数c的取值范围;
(Ⅱ)通过(Ⅰ)利用韦达定理,结合x1<x2x2-x1=
(x1+x2)2-4x1x2
,利用c的范围,求出x2-x1的取值范围;
(Ⅲ)利用二次函数图象的开口方向,结合f(m)<0,利用x2-x1∈(0,1),通过放缩即可证明m+1>x2
解答:(本小题满分14分)
解:(Ⅰ)由x2+x+c=0有两个实数根x1,x2(x1<x2)及c>0得
△=12-4c>0
c>0
可知:0<c<
1
4
…(2分)
(Ⅱ)依根与系数的关系,得:
x1+x2=-1
x1x2=c
…(4分)
又x2-x1>0,所以,x2-x1=
(x1+x2)2-4x1x2
=
1-4c

0<c<
1
4
,∴1>
1-4c
>0
∴0<x2-x1<1…(8分)
∴故x2-x1∈(0,1)
(Ⅲ)证:∵f(m)<0且抛物线f(x)=x2+x+c的开口向上
∴x1<m<x2…(10分)
可知:m-x1>0
而m+1>m+(x2-x1)=(m-x1)+x2>x2…(14分)
点评:本题是中档题,考查二次函数的根与系数的关系,注意韦达定理的应用,放缩法证明不等式的方法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c满足f(-1)=0,对于任意的实数x都有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤(
x+12
)
2

(1)求f(1)的值;
(2)求证:a>0,c>0;
(3)当x∈(-1,1)时,函数g(x)=f(x)-mx,m∈R是单调的,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2
1
a
,且函数f(x)的图象关于直线x=x0对称,则有(  )
A、x0
x1
2
B、x0
x1
2
C、x0
x1
2
D、x0
x1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+(2b+1)x-a-2(a,b∈R,a≠0)在[3,4]上至少有一个零点,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足:当x=1时,f(x)取得最小值1,且f(0)=
32

(1)求a、b、c的值;
(2)是否存在实数m,n,使x∈[m,n]时,函数的值域也是[m,n]?若存在,则求出这样的实数m,n;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=x2+x+a(a>0),若f(m)<0,则有(  )

查看答案和解析>>

同步练习册答案