【题目】已知函数.
(1)若在其定义域上单调递减,求的取值范围;
(2)证明:在区间恰有一个零点.
【答案】(1);(2)证明见解析.
【解析】
(1) ,如果单调递减,则当时,恒成立,可求出答案.
(2) 当时,由于在区间单调递减,且,,命题成立. 当时,由于,方程在区间有唯一的实根,从而在区间单调递减,在区间单调递增,可以讨论得到命题的证明.
(1)由于的定义域为,且,所以如果单调递减,则当时,恒成立,解得,即的取值范围为.
(2)(i)当时,由于在区间单调递减,且,
,所以区间恰有一个零点;
(ii)当时,由于,
由,设,
对称轴为,,且.
所以方程在区间有唯一的实根,
从而在区间单调递减,在区间单调递增,注意到,
所以区间的零点个数不超过1个.
①当时,由于,所以区间恰有一个零点;
②当时,由于,所以区间恰有一个零点.
综上,在区间恰有一个零点.
科目:高中数学 来源: 题型:
【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:
分组 | ||||||
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人;
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个结论:
①若在上是奇函数,则在上也是奇函数
②若不是正弦函数,则不是周期函数
③“若,则.”的否命题是“若,则.”
④若:;:,则是的充分不必要条件
其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《乌鸦喝水》是《伊索寓言》中一个寓言故事,通过讲述已知乌鸦喝水的故事,告诉人们遇到困难要运用智慧,认真思考才能让问题迎刃而解的道理,如图所示,乌鸦想喝水,发现有一个锥形瓶,上面部分是圆柱体,下面部分是圆台,瓶口直径为厘米,瓶底直径为厘米,瓶口距瓶颈为厘米,瓶颈到水位线距离和水位线到瓶底距离均为厘米,现将颗石子投入瓶中,发现水位线上移厘米,若只有当水位线到达瓶口时乌鸦才能喝到水,则乌鸦共需要投入的石子数量至少是( )
A.颗B.颗C.颗D.颗
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)设各项均为正数的等比数列中,
(1)求数列的通项公式;
(2)若,求证: ;
(3)是否存在正整数,使得对任意正整数均成立?若存在,求出的最大值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB=1,AB=4.
(1)证明:平面ADE⊥平面ACD;
(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面上到两个定点的距离的积为定值的动点轨迹一般称为卡西尼(cassin)卵形线,已知曲线为到定点的距离之积为常数4的点的轨迹,关于曲线的几何性质有下四个结论,其中错误的是( )
A.曲线关于原点对称B.的面积的最大值为2
C.其中的取值范围为D.其中的取值范围为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年春,新型冠状病毒在我国湖北武汉爆发并讯速蔓延,病毒传染性强并严重危害人民生命安全,国家卫健委果断要求全体人民自我居家隔离,为支援湖北武汉新型冠状病毒疫情防控工作,各地医护人员纷纷逆行,才使得病毒蔓延得到了有效控制.某社区为保障居民的生活不受影响,由社区志愿者为其配送蔬菜、大米等生活用品,记者随机抽查了男、女居民各100名对志愿者所买生活用品满意度的评价,得到下面的2×2列联表.
特别满意 | 基本满意 | |
男 | 80 | 20 |
女 | 95 | 5 |
(1)被调查的男性居民中有5个年轻人,其中有2名对志愿者所买生活用品特别满意,现在这5名年轻人中随机抽取3人,求至多有1人特别满意的概率.
(2)能否有99%的把握认为男、女居民对志愿者所买生活用品的评价有差异?
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com