【题目】设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
【答案】(1) y=x–1,(2)或.
【解析】分析:(1)根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线的方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.
详解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).
设A(x1,y1),B(x2,y2).
由得.
,故.
所以.
由题设知,解得k=–1(舍去),k=1.
因此l的方程为y=x–1.
(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为
,即.
设所求圆的圆心坐标为(x0,y0),则
解得或
因此所求圆的方程为
或.
科目:高中数学 来源: 题型:
【题目】已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若∥,∥,求点D的坐标;
(2)问是否存在实数α,β,使得=α+β成立?若存在,求出α,β的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的奇函数f(x)满足f(x+1)=f(﹣x),当x∈(0,1)时,f(x)= , 则f(x)在区间(1,)内是( )
A.增函数且f(x)>0
B.增函数且f(x)<0
C.减函数且f(x)>0
D.减函数且f(x)<0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,点M在线段EC上.
(Ⅰ)证明:平面BDM⊥平面ADEF;
(Ⅱ)判断点M的位置,使得三棱锥B﹣CDM的体积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x﹣4)2+(y﹣5)2=4
若直线l过点A(4,0),且被圆C1截得的弦长为2 , 求直线l的方程
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (θ为参数),曲线C2的普通方程为,以原点为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C1的普通方程和C2的极坐标方程;
(2)若A,B是曲线C2上的两点,且OA⊥OB,求+的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,AB=2,3acosB﹣bcosC=ccosB,点D在线段BC上.
(1)若∠ADC= ,求AD的长;
(2)若BD=2DC,△ACD的面积为 ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与抛物线交于点A,B两点,与x轴交于点M,直线OA,OB的斜率之积为.
(1)证明:直线AB过定点;
(2)以AB为直径的圆P交x轴于E,F两点,O为坐标原点,求|OE||OF|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com