精英家教网 > 高中数学 > 题目详情

【题目】求函数f(x)=﹣ x3+4x﹣1在[0,3]上的最大值和最小值.

【答案】解:由 f(x)=﹣ x3+4x﹣4,得f′(x)=﹣x2+4,

令f′(x)=0,则x=﹣2或x=2,

当x变化时,f′(x)和f(x)变化如下表:

x

0

(0,2)

2

(2,3)

3

f′(x)

+

0

f(x)

﹣4

﹣1

故函数f(x) 在[0,3]上有最大值,

最大值为f(2)= ,最小值为f(0)=﹣4


【解析】求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的最值即可.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):

甲:37213120291932232533

乙:10304727461426104446

1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;

2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为π,它的一个对称中心为(,0)

(1)求函数y=f(x)图象的对称轴方程;

(2)若方程f(x)=在(0,π)上的解为x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知元素为实数的集合满足下列条件: ,则

I)若,求使元素个数最少的集合

II)若非空集合为有限集,则你对集合的元素个数有何猜测?并请证明你的猜测正确.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P为圆C1:x2+y2=9上任意一点,Q为圆C2:x2+y2=25上任意一点,PQ中点组成的区域为M,在C2内部任取一点,则该点落在区域M上的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(-1,2)且与两坐标轴的正半轴所围成的三角形面积等于

(1)求直线l的方程.

(2)求圆心在直线l上且经过点M(2,1),N(4,-1)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判定f(x)的奇偶性并证明;
(Ⅲ)用函数单调性定义证明:f(x)在(1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= , ①若f(a)=14,求a的值
②在平面直角坐标系中,作出函数y=f(x)的草图.(需标注函数图象与坐标轴交点处所表示的实数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体中, 平面 .

求四面体的四个面的面积中,最大的面积是多少?

Ⅱ)证明:在线段上存在点,使得,并求的值.

查看答案和解析>>

同步练习册答案