精英家教网 > 高中数学 > 题目详情
18.求下列三角函数值:
(1)sin1470°;
(2)cos$\frac{9π}{4}$;
(3)tan(-$\frac{11}{6}$π).

分析 直接利用诱导公式化简求值即可.

解答 解:(1)sin1470°=sin(1440°+30°)=sin30°=$\frac{1}{2}$;
(2)cos$\frac{9π}{4}$=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$;
(3)tan(-$\frac{11}{6}$π)=-tan$\frac{π}{6}$=-$\frac{\sqrt{3}}{3}$.

点评 本题考查三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)已知对任意x∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,求a的取值范围.
(2)已知对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过P(5,4)作圆C:x2+y2-2x-2y-3=0的切线,切点分别为A,B.则四边形PACB的面积是(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若复数|z-3-4i|=1,求|z|的最大值,最小值,并求最值时的z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题正确的是(  )
A.方程$\frac{y}{x-2}=1$表示斜率为1,在y轴上截距为-2的直线
B.△ABC的三个顶点是A(-3,0),B(3,0),C(0,3),则中线CO(O为坐标原点)的方程是x=0
C.到y轴距离为2的点的轨迹方程为x=2
D.方程y=$\sqrt{{x}^{2}+2x+1}$表示两条射线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(2x+5)2<36的解集是{x|$-\frac{11}{2}<x<\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=x2-4在[-2,2]上的最大值、最小值分别是(  )
A.0,-4B.4,0C.4,-2D.4,-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\frac{x}{\sqrt{1-{x}^{2}}}$的奇偶性为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn=$\frac{1}{2}$anan+1,n∈N*,且a1=1.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2n-1}{{2}^{{a}_{n}}}$(n∈N*),数列{bn}的前n项和为Tn,写出Tn关于n表达式,并求满足Tn>$\frac{5}{2}$时n的取值范围.

查看答案和解析>>

同步练习册答案