精英家教网 > 高中数学 > 题目详情
已知
a
=(cosx,-sin2x),
b
=(6sinx+
3
cosx,
3
)
,函数f(x)=
a
b

(1)求函数f(x)的最小正周期和单调减区间;
(2)若x∈[0,
12
]
,求函数f(x)的最大值和最小值,并指出最大值和最小值时相应的x的值.
分析:(1)利用向量的数量积公式,结合二倍角公式,辅助角公式,化简函数,周期利用正弦函数的性质,即可求得函数的单调减区间;
(2)由(1)知,f(x)在[0,
π
6
]上单调递增,在[
π
6
12
]上单调递减,从而可得函数的最值.
解答:解:(1)∵
a
=(cosx,-sin2x),
b
=(6sinx+
3
cosx,
3
)

∴函数f(x)=
a
b
=3sin2x+
3
cos2x=2
3
sin(2x+
π
6
)(x∈R)
∴T=
2

π
2
+2kπ
≤2x+
π
6
2
+2kπ
(k∈Z)
π
6
+kπ≤x≤
3
+kπ

∴函数的单调减区间为[
π
6
+kπ,
3
+kπ
](k∈Z)
(2)由(1)知,f(x)在[0,
π
6
]上单调递增,在[
π
6
12
]上单调递减
∴x=
π
6
时,f(x)有最大值f(
π
6
)=2
3

∵f(0)=
3
>f(
12
)=0
∴x=
12
时,函数有最小值f(
12
)=0
点评:本题考查向量知识的运用,考查三角函数的化简,考查函数的单调性与最值,正确化简函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx)
,设f(x)=
a
b

(1)求函数f(x)的最小正周期,并写出f(x)的减区间;
(2)当x∈[0,
π
2
]
时,求函数f(x)的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知已知
a
=(cosx,sinx),
b
=(sinx,cosx)
,记f(x)=
a
b
,要得到函数y=sin2x-cos2x的图象,只须将y=f(x)的图象(  )
A、向右平移
π
4
个单位
B、向右平移
π
2
个单位
C、向左平移
π
4
个单位
D、向左平移
π
2
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosx,sinx),
b
=(cosx+
3
sinx,
3
cosx-sinx)
,f(x)=
a
b

(1)求f(x)的解析式及其最小正周期;
(2)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳二模)已知
a
=(cosx+sinx,sinx),
b
=(cosx-sinx,2cosx)
,设f(x)=
a
b

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[-
π
4
π
4
]
时,求函数f(x)的最大值,并指出此时x的值.

查看答案和解析>>

同步练习册答案